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Battery model plays an important role in the simulation of electric vehicles (EVs) and states estimation of
the batteries in the development of the model-based battery management system. To build a battery
model with enough precision and suitable complexity, firstly this paper summarizes the seven represen-
tative battery models, which belong to the simplified electrochemical models or the equivalent circuit
models. Then the model equations are built and the model parameters are identified with an online
parameter identification method. The battery test bench is built and the experiment schedule is designed.
Finally an evaluation is performed on the seven battery models by an experiment approach from the
aspects of the estimation accuracy of the terminal voltages. To evaluate the effect of the number of RC
networks on the model’s precision, the battery general equivalent circuit models (GECMs) with different
RC networks are also discussed further. The results indicate the equivalent circuit model with two RC net-

Experiment
Battery management system

works, the DP model, has an optimal performance.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Energy is the basis of the human survival and development, it’s
urgent to develop green energy and use the nonrenewable energy
rationally. Since transportation consumes a large part of energy, to
develop and apply the electric vehicles (EVs) is necessary in the
way of green mobility [1-4]. Power battery is the key component
of EVs, which include battery electric vehicles (BEVs), hybrid elec-
tric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs).
To ensure the power battery work safely and reliably, which is
functioned by the battery management system (BMS) [5-7], the
temperature, voltage, current of the batteries should be monitored
and the states of the batteries should be estimated precisely in real
time. However, it is hard to measure the states of batteries, like
state of charge (SoC), state of health (SoH), state of function (SoF)
directly for the complicated electrochemical process and various
influence factors from the practice application, the estimation
method based on battery models is used broadly and the battery
model plays an important role [8-15].

Many battery models, which are lumped models with relatively
few parameters, have been put forward especially for the purpose
of vehicle power management control and battery management
system development. The most commonly used models can be
summarized as two kinds: the electrochemical models and the
equivalent circuit models [9,15-21]. The electrochemical models
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utilize a set of coupled non-linear differential equations to describe
the pertinent transport, thermodynamic, and kinetic phenomena
occurring in the cell. They are relatively straight forward to trans-
late the distributions into easily measurable quantities such as cell
current and voltage, and build a relationship between the micro-
scopic quantities, such as electrode and interfacial microstructure
and the fundamental electrochemical studies and cell performance
[22]. However, they typically deploy partial differential equations
(PDEs) with a large number of unknown parameters, which often
leads to a large memory requirement and a heavy computation
burden, so the electrochemical battery models are not desirable
for actual BMS (battery management system) [23] and the simpli-
fied electrochemical models, which ignore the thermodynamic and
quantum effects, are proposed to simulate the electrochemical and
voltage performance. The Shepherd model, the Unnewehr Universal
model, the Nernst model and the Combined model are the typical
representatives. The equivalent circuit battery models are devel-
oped by using resistors, capacitors and voltage sources to form a
circuit network. Typically, a big capacitor or an ideal voltage source
is selected to describe the open-circuit voltage (OCV), the remain-
der of the circuit simulates the battery’s internal resistance and
relaxation effects such as dynamic terminal voltage. The Rint mod-
el, the Thevenin model, the DP model and their revisions are widely
used.

For the modeling and simulation of EVs and the development of
the model-based BMS, the first important thing is to select and
build a suitable battery model. How to evaluate and get a compro-
mise in the balance of complexity and accuracy of the battery
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model is one of the key technologies, and also the problem to be
discussed and solved in this paper.

2. Battery models and parameters identification method
2.1. The battery models

The equivalent circuits of the Rint model, the Thevenin model
and the DP model are shown in Fig. 1. The equations and features
of the seven representative battery models mentioned before are
summarized and listed in Table 1.

Where U, is the terminal voltage; Ko, K3, K>, K3, K4 are constants
chosen to make the model fit the data well; [; is the load current; R,
is the internal resistance; z is the abbreviation for SoC; U, is the
open-circuit voltage; R, is the equivalent polarization resistance
and G, is the equivalent polarization capacitance to model the bat-
tery relaxation effect during charging and discharging; U, is the
voltages across Cp; I, is the outflow current of C,; Ry, R, are the
effective resistances and C;, C, are the effective capacitances used
to model the polarization characteristic in more details; U; and U,
are the voltages across C; and C, respectively.

2.2. Model parameters’ identification

The models’ parameters identified by the traditional offline
identification method maybe exit errors inevitably which caused
by internal and external factors such as battery operating environ-
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ment and aging, thus the accuracy will decrease. To solve these
problems, we choose an online parameter identification method
instead based on the recursive least squares (RLSs) method with
an optimal forgetting factor.

2.2.1. The recursive least squares method with an optimal forgetting
factor

A model-based method can provide a cheap alternative in esti-
mation or it can be used along with a sensor-based scheme to pro-
vide some redundancy. The RLS method with an optimal forgetting
factor (RLSF) has been widely used in estimation and tracking of
time varying parameters in various fields of engineering. Many
successful implementations of RLSF-based adaptive control for
time varying parameters estimation are available in the literature
[26-28].

We would like to apply the RLSF method in the prediction of
battery terminal voltages with an online parameters’ identification
of the battery models. Consider a single input single output (SISO)
process described by the general higher order auto-regressive
exogenous (ARX) model:

Vi = @0 + & (1)

where y is the system output, which denotes the terminal voltage U,
in this paper. @ and 0 are the information vector and the unknown
parameter vector respectively. The parameters in 0 can either be
constant or subject to infrequent jumps. ¢ is a stochastic noise var-
iable (random variable with normal distribution and zero mean),
and k denotes the sample interval, k=0, 1, 2,...

(a)

Fig. 1. Schematic diagram of equivalent battery circuit models: (a) The Rint model; (b) The Thevenin model; and (c) The DP model.

Table 1
Battery models and key features.

Classification Models

Model equations and Features

Simplified electrochemical
battery models [9]

1-Shepherd model U, =Ko — R,l + Ky/zs
2-Unnewehr

Universal Model
3-Nernst model

Ur = Ko — Rolp + Kpzs

The model describes the electrochemical behavior of the battery directly in terms of voltage and current

The model simplifies the Shepherd model and attempts to model the variation in resistance with respect to SoC
U =Ko — Rol; + K5 Inzg + K4 In(1 — z)

The model can be viewed as a modifications to the Shepherd model and uses exponential function with respect

to SoC
4-Combined model

U; = Ko — Ryl + Ky/zs + Kozs + K3 Inzs + K4 In(1 — z5)

The model can be viewed as a combination of the previous three models to obtain the most accurate

performance

5-Rint model [24] U;=Upe — 1R,
6-Thevenin model { Up _IL_ U

Equivalent circuit battery
models

[25] Ur = Uy — Uy — 1R,

The model connects a parallel RC network in series based on the Rint model, describing the dynamic
characteristics of the battery [25]

7-DP model [21] U, = ,Rl‘lié‘Jré,L‘
- U,
Up=—g+&

U =U.-U; =U; — iR,

The model connects a parallel RC network in series based on the Thevenin model, in order to refine the
description of polarization characteristics and simulate the concentration polarization and the electrochemical
polarization separately which may leads to a more accurate performance
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Then the system identification is realized as follows [28].

P19}
HOIP 1

Kk =
P, — Pk—l’KE‘PZP/z—l 2)
€k =Yr— (pkék*l
0 = 0,1 + Kpey

where 8, is the estimate of the parameter vector 0y; ey is the predic-
tion error of the terminal voltage; K is the algorithm gain and Py is
the covariance matrix; the constant / is the forgetting factor, typi-
cally 1 €[0.95,1] and is very important to obtain a good estimated
parameter set with small error.

2.2.2. Parameters’ identification

The simplified electrochemical model in discrete form can be
rewritten in the form of the ARX model, and then use the RLSF-
based method to carry out parameter identification. While for
the equivalent circuit model, there need to get a discrete form of
the dynamic equations first, then use the RLSF-based method to
carry out parameter identification.

Considering the bilinear transformation method can keep the
dynamic characteristics of the system well, we adopt this method
to discretize the dynamic equations.

The electrical behavior equation shown in Table 1 for the
Thevenin model can be rewritten as follows in the frequency
domain.

Ue(s) = Uoc(s) — I(s) (R" +$1;Cp$> ”

Define E; = U; — U, the transfer function G(s) of Eq. (3) can be
written as follows.

_El) L, R
I.(s) ® 14+R,Cps
A bilinear transformation method shown in Eq. (5) is employed

for the discretization calculation of Eq. (4) and the result is shown

in Eq. (6).

21-z1
ST Tvz0 ®)

where z is the discretization operator and T is the sample interval.
Herein, Tsis 1s.

_ Ry + Ry + RoR,Cps (4)
1+ RyCps

G(s)

-1
_ a, + asz
Gzl)=-7— "+ (6)
1- az-
Define:
__1-2RGp
01 = —T3R,c,
__ RotRy+2RoRyCp
a; = T12R,Cp (7)
_ Ro+Rp—2ReRpCp
a3 =— T+2R,Cp

Then the model parameters can be solved according to the uni-
ted equations of a;, a; and as. Ref. [11] concludes the model’s
parameters can be viewed as a constant value in limited sample
intervals, then:

Use 0= Upe = Uoc,lc—l (8)

Similarly, the R, ~ 0 holds since the sampling period is rela-
tively small, and then,

U = (1 = a1)Uock + a1Us g1 + a2l i + aslp 9)

Similarly, the DP model can be discretized with the bilinear
method, and then:

Table 2
The detailed recursive equations of the battery models.

Battery models Recursion equations

1-Shepherd model
{‘PLk =[1 —Ix 1/z]
015 = [Eox Rox Kyl
2-Unnewehr Universal
Model {#’z‘k =1 =ik 1/z5]
02 = [Eox Ror Kak]"
3-Nernst model
{ﬂom =[1 —Ix Inzy In(1—zg))
03 = [Eox Rox Ksp Kax]"
4-Combined model Vi =Usx
{‘Pu« =[1 ~lix 1/zp zgp Inzg In(1—zgy)]
Oar = [Eox Rox Kir Kax Ksp Kagl”
5- Rint model
{‘PsAk =[1 Il

6-Thevenin model
@sk =11 Uekr e lig1]
Ok =[(1-a1) Upgr @ a as]’
7-DP model
@71 =11 U1 Uppa I Ipger Iiee2]
8, =[(1—-by —b3) Uex b1 ba b3 by bs]"

Uk = (1 = by —ba)Uock +b1Ucx_1 + baUc 2 + bl
+bal k1 + bsli k> (10)

where b4, by, bs, b4 and bs are the coefficient which contain model’s
parameters, and the detailed recursion solution equations for the
above seven models are listed in Table 2.

Where @; is the information matrix and 0;; is the unknown
parameter matrix of the ith model, i=1, 2, 3,..., 7.

3. Experiments and data sampling

In order to sample the measurement data from the sensors to
perform the model parameters’ identification and the performance
evaluation on the battery models, the battery test bench is built
and the experiment schedule is designed.

3.1. Battery test bench

The test bench is shown in Fig. 2, which consists of a Digatron
battery test system BNT 400-050, a thermal chamber for environ-
ment control, a host computer and BTS-600 interface for program-
ming the BNT 400-050. The host computer is used for the real-time
calculation of the model parameters. The BNT 400-050 can charge/
discharge a battery according to the designed program with max-
imum voltage of 50 V and maximum charge/discharge current of
400 A, and its recorded data include current, voltage, temperature,
accumulative amp-hours (Ah) and watt-hours (W h), etc. The
measured data is transmitted to the host computer through TCP/
IP driven by BNT 400-050. The host computer has a low-pass
filtering function to implement large noise cancellation [15].
Furthermore, in order to improve the sampling precision of cell
voltage, the Fluke 8846A multimeter, whose measurement accu-
racy of DC voltage is up to 0.0024% with a 6.5 digit resolution,
has been applied for cell voltage measurement [29]. A LiFePO4 cell
with nominal voltage of 3.2V and nominal capacity of 10Ah is
selected as the test object.

3.2. Battery test schedule

The battery is kept in the thermal chamber and the temperature
is controlled within 20 * 5 °C. The battery text schedule is designed
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Fig. 2. The configuration of the battery test bench.

and shown in Fig. 3, which includes a characteristic test and an
aging cycle test followed. For the characteristic test, the available
capacity test is based on the standard of [30] to measure the max-
imum available capacity. Usually, the available capacity test is re-
peated three times. If the error of the experiment results between
the maximum and the average is within 2%, the available capacity
test is effective and the average value is taken as the actual maxi-
mum available capacity; however, if the error is more than 2%, the
available capacity test should be repeated. The HPPC test is from
the Battery Test Manual [31] and is the foundation of power bat-
tery characteristic test and parameter identification test, which
achieves good results in off-line parameter identification and is
used widely. The Dynamic Stress Test (DST) and the Federal Urban
Dynamic Schedule (FUDS) test are the commonly used test proce-
dures of Digatron [32]. The FUDS is a standard time-velocity profile
for urban driving vehicles and has been widely used in the evalu-
ation of model accuracy and SoC estimate of battery management
system. For the driving-cycle testing of USABC batteries, a simpli-
fied version of the FUDS test is modified into the Dynamic Stress
Test (DST). For the FUDS test, the DST test and the HPPC test, the
battery SOC is controlled in the range of 0.25-1.0, 0.2-1.0 and
0-1.0 respectively.

3.3. Data of the battery experiment

In this paper, the data collected in the characteristic test of a
fresh cell are arranged for the model parameters’ identification

and model evaluation.
Available Capacity
Test

Rest 10h § Repeat 3 times

HPPC Test ]
Rest 10h ¢

—| Characterization Test

DST Test ]
Rest 10h 4

Schedule<

FUDS Test ]

|

|

§
(e

*—[ Aging cycle Test CC-discharge

Repeat 100 times|

Fig. 3. Battery test schedules.

For the LiFePO, cell, the available capacity test shows that its
actual maximum available capacity is 10.78 A h, slightly higher
than 10 Ah of the nominal capacity. The HPPC test results are
shown in Fig. 4 including a sample HPPC current curve, a sample
HPPC voltage curve under SoC = 0.8, the current profiles, the volt-
age profiles and the SoC profiles. The DST test results are shown
in Fig. 5 including the current vs. time profiles and the SoC vs. time
profiles. The FUDS test results are shown in Fig. 6 including the SoC
profiles and one sample current profile of one FUDS cycle.

Due to the hard determination of the exact SoC value, here we
determine the initial SoC and the terminal SoC of the LiFePO, lith-
ium-ion battery according to the definition of SoC with a standard
charging experiment and a further standard discharging experi-
ment after finishing a test, so the initial SoC and the terminal
SoC are accurate. The ampere-hour counting approach is used to
calculate the SoC since it can keep track of the accurate SoC with
an accurate initial SoC and a compensation of the coulombic effi-
ciency. We also improve the SoC accuracy with a revision method
based on the accurate terminal SoC. Considering all the battery
experiments are carried out in a temperature chamber; the SoC
calculation method is feasible with an acceptable accuracy.

4. Evaluation and discussion on the battery models

To evaluate the battery models rationally and objectively, an
evaluation method is built first. Then the performances of the
seven battery models are compared by the RLSF-based method.
And the effect of the different RC networks of the equivalent circuit
models are also discussed by a comparison of the terminal voltage
estimation accuracy.

4.1. Evaluation method

To evaluate the battery models well, the online voltage estima-
tion is performed with the HPPC test, the DST test and the FUDS
test. Further, a statistics of the voltage error is analyzed in the as-
pects of the maximum, the minimum, the mean, the maximum of
the RMSE (the root mean square error) and the mean of the RMSE.
The voltage error denotes the difference between the experimental
data and online estimated value. The RMSE denotes the deviation
degree of the estimated value and the experimental value, which
not only shows the present error, but also indicates the conver-
gence of the estimation algorithm.

4.2. Evaluation analysis on the battery models

The evaluation results of the seven battery models under the
HPPC test are shown in Fig. 7, including the statistics results of
the voltage errors, the statistics results of the RMSE, the voltage
profiles of model-based estimation with the representatives of
the Shepherd model, the Nernst model, the DP model and the HPPC
test. Fig. 7a shows that 6-Thenenin model and 7-DP model have
smaller voltage errors, the mean of the voltage error of the simpli-
fied electrochemical models are also small. For 1-Shepherd model
and 3-Nernst model, the maximum of voltage errors or the absolute
value of the minimum of voltage errors are bigger than others.
Fig. 7b shows that the RMSE of the seven models is less than
25 mV and is within 1% of the cell’s nominal voltage, that means
the online parameter identification method is effective. Just like
the results of Fig. 7b, 6-Thevenin model and 7-DP model have smal-
ler RMSE values and is better than the other five models under the
HPPC test, since they takes the cell’s relaxation effect into account
for modeling. The fact, that 5-Rint model exists a big estimation er-
ror for the ignorance of the battery’s dynamic voltage performance,
indicates it is necessary to consider the voltage relaxation effect to
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Fig. 6. The plots of the FUDS test: (a) the SoC vs. time profiles and (b) the sample current vs. time of one FUDS cycle.

improve the precision of the models for lithium-ion battery. Fig. 7c
shows that the estimated voltages based on 1-Shepherd model
nearly follow the test data except for the terminals where the
SoC is nearly zero and the battery seldom works. Fig. 7b shows that
1-Shepherd model has higher precision than 3-Nernst model, that
can also be verified from the fact, that the estimated voltage based
on 3-Nernst model is higher than the experimental data at the end
of the test and also a bigger voltage error of 3-Nernst model exists
as shown in Fig. 7c. Fig. 7d shows that the terminal voltage esti-
mated by 7-DP model agrees quite well with the experimental

value. Based on the above analysis, it can be concluded that the
DP model has the best dynamic voltage simulation performance
among the seven battery models.

The evaluation results of the seven battery models under the
DST test are shown in Fig. 8 including the statistics results of the
voltage errors, the statistics results of the RMSE. Fig. 8a shows that
1-Shepherd model, 6-Thevenin model and 7-DP model have good
online estimation precision with small voltage errors. Fig. 8b
shows that 6-Thevenin model and 7-DP model have a relatively
small RMSE, especially the 7-DP model. There can conclude that
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model-based estimation, the Nernst model-based estimation and the HPPC test; and (d) the voltage profiles of the DP model-based estimation and the HPPC test.

the DP model is the most outstanding model among the seven
models, followed by 6-Thevenin model. This result agrees with
the HPPC test. In Fig. 9, we choose two profiles in the DST test to
describe the estimate accuracy between the estimated voltage by
the DP model and the experiment data. It indicates that the DP
model can simulate the battery’s dynamic voltage performance
very well under the DST test, which fully satisfies the development
requirements of model-based BMS used in the EVs.

The evaluation results of the seven battery models under the
FUDS test are shown in Fig. 10 including the statistics results of
the voltage errors, the statistics results of the RMSE, the RMSE pro-
files of the four specific battery models, the voltage profiles of the
DP model-based estimation and FUDS test data. Fig. 10a shows that
the two models, 6-Thevenin model and 7-DP model, both of them
take the polarization characteristics into consideration, have a
smaller voltage error compared with other models. Also, Fig. 10b
indicates that the mean of the RMSE of 6-Thevenin model and
7-DP model is the smallest. But the maximum of the RMSE of the
Thevenin model is bigger than 1-Shepherd model and 2-Unnewehr
Universal model. Combined Fig. 10a and b, we can conclude that
the DP model has a higher precision than other six models surely.
However, to determine if 6-Thevenin is the second better model de-
pends on the RMSE profile additionally. Fig. 10c intuitively indi-
cates that 6-Thevenin model and 7-DP model restrain themselves
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Fig. 9. The voltage profiles of the DP model-based estimation and the DST test data.

to approach the true values faster, so they have smaller mean of
the RMSE, while 1-Shepherd model and 2-Unnewehr Universal mod-
el maintain themselves above 10 mV without a convergent ten-
dency; The maximum of the RMSE of 6-Thevenin model is bigger
than that of 1-Shepherd model and 2-Unnewehr Universal model.
But for the convergent tendency, 6-Thevenin model is more stable,
and the voltage error is less than 1-Shepherd model and 2-
Unnewehr Universal model, so it can be determined that 6-Thevenin
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Fig. 8. Evaluation results under the DST test: (a) the statistics results of the voltage error and (b) the statistics results of the RMSE.
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model is the second better model. Therefore, in the FUDS test, the
DP model still has the most outstanding performance, followed by
the Thevenin model; we can conclude that it is reasonable to refine
the lithium-ion battery’s voltage relaxation effect to improve the
model-based estimated precision.

The evaluation results of the HPPC test, the DST test, the
FUDS test come to one conclusion that the Thevenin model and
the DP model are more accurate than the other five models ow-
ing to their considerations of the voltage relaxation effect to
some extent. After refining the polarization characteristics, the
accuracy of the DP model gets a significant improvement com-
pared with the Thevenin model by connecting an additional RC
network, does it mean that it will improve the model accuracy
by connecting enough RC networks in series? We will discuss
this next.

4.3. Discussions

The above evaluation results show that the equivalent circuit
models considering the voltage relaxation effect have better per-
formance than the other models, and the DP model with two RC
networks has better dynamic voltage estimation precision than
the Thevenin model with one RC network. In order to give a further
study of the RC networks on the model accuracy, the battery gen-
eral equivalent circuit model (GECM) with n RC networks is pro-
posed as shown in Fig. 11.

Where C; is the ith equivalent polarization capacitance and R; is
the ith equivalent polarization resistance simulating the transient
response during a charge or discharge process, U; is the voltage
across Gi.i=1,2,3,4,...,n.

The electrical behavior of the GECM model can be expressed by
Eq. (11) in the frequency domain.

Uc(s) = Upc(s) — IL(S) (R,, +
(n=0,1,2,...)

Rl 4ot Rn
1 +R1C15 1 +Rncns
(11)

Similarly with the Thevenin model and the DP model, the GECM
model can be discretized with the bilinear method [33], and then:

n
ULk = <1 - ZQ) UocAk + G Ut,lc—l +C2 Ut,k—z R CnUt,k—n
i=1

+ Cnptlpr + Cogalip1 + - - - 4 Congalipen (12)

where ¢(i=1,2,..., 2n+ 1) are the coefficient which contain mod-
el’s parameters such as polarization capacitance, polarization resis-
tance and open-circuit voltage

Define:
@ =1 Uer Urpz Uiken Tieer Tiro Ikn]
. T
Ony = {(12(&‘) Uk €1 G2 €3 Cont1
i
(13)

Then the online parameters’ identification matrix of the GECM
model is built.

Considering the model complexity, when the number of the RC
networks n is more than 5, a big error will arise from the linear dis-
crete method. However, if other non-linear parameters’ identifica-
tion method is used such as the Kalman filters, there will cause a
huge computing costs due to the complex model structure. So
the evaluation tests are only conducted for the GECM models with
n=1-5 and the results are shown in Fig. 12.

Fig. 12 shows that for the HPPC test, the DST test and the FUDS
test, the maximum of the absolute voltage errors is within 32 mV

+ U - + Un —
I I I + Uy —
Cl - n
RO
N Rl Rn
Uk U,
&)

Fig. 11. The schematic diagram of the battery general equivalent circuit model.
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Fig. 12. Evaluation results of the GECM models: (a) the statistics results of the voltage error under the HPPC test; (b) the statistics results of the RMSE under the HPPC test; (c)
the statistics results of the voltage error under the DST test; (d) the statistics results of the RMSE under the DST test; (e) the statistics results of the voltage error under the

FUDS test; and (f) the statistics results of the RMSE under the FUDS test.

and the maximum of the RMSE is less than 15 mV. Fig. 12a shows
that for the HPPC test, the GECM model with one RC network has
the biggest voltage error, while the GECM model with two RC net-
work performs best, but the mean of voltage error is not significant
compared with the GECM model with three, four, five RC networks.
Fig. 12b shows that the statistics of the RMSE are less than 1 mV,
and the GECM model with two RC networks is the best. Fig. 12c
shows that the GECM model with two RC networks has the small-
est statistics values among the five models for the DST test;
Fig. 12d shows the GECM model with two RC networks has the
smallest mean of the RMSE while its maximum of the RMSE is big-
ger than the GECM model with five RC networks. However, the
GECM model with two RC networks is simpler than that with five
RC networks and is still the nest battery model after considering
the practical applications.

Fig. 12e and f shows that for the FUDS test, the maximum of the
voltage error of the GECM model with five RC networks performs
better than the GECM model with two RC networks, However the
GECM model with two RC networks performs the best in the abso-
lute minimum, the mean of the voltage errors and statistics values
of the RMSE. It can be concluded that the GECM model with two RC
networks still shows the best performance.

In summary, the GECM model with two RC networks, also called
the DP model, is the best model for the lithium-ion battery simula-
tion. Further, it does not mean that the more RC networks the mod-
el has, the more accurate the model is. On the contrary, the

performance of the GECM model with more than three RC net-
works becomes worse in some aspects.

5. Conclusion

This paper carries out a systematic evaluation on the seven typ-
ical battery models based on the HPPC test, DST test, FUDS test, and
the GECM model with different RC networks is discussed further.
Main conclusions are summarized as follows:

(1) The Seven commonly used battery models: Shepherd model,
Unnewehr Universal model, Nernst model, Combined model,
Rint model, Thevenin model, and the DP model are summa-
rized, the model equations are deduced and the model
parameters’ identification method is designed based on the
recursive least squares method with an optimal forgetting
factor.

(2) The battery test bench is built and the experiment schedule
is designed, which includes a characteristic test and an aging
cycle test followed. The online identification process is con-
ducted under the HPPC test, the DST test, the FUDS test for a
LiFeOy4 lithium-ion battery.

(3) An evaluation method of the battery models is proposed and
the evaluation results show that the voltage relaxation effect
of the lithium-ion battery cannot be ignored, the Thevenin
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model and the DP model both have good dynamic perfor-
mance, and the DP model performs much batter for its more
refined simulation of the voltage relaxation.

(4) A further discussion on the GECM model with different RC
networks indicates that the GECM model with two RC net-
works, also called the DP model, is the best model for the
lithium-ion battery simulation. The performance of the
GECM model with more than three RC networks will become
worse in some aspects.

We can conclude that the DP model shows the best perfor-
mance among the seven commonly used models through our com-
prehensive comparison. The DP model performs the best in the DST
test, which further proves that the DP model is suitable for the
development of model-based BMS used in EVs.
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