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a b s t r a c t

Compared with other commonly used batteries, lithium-ion batteries are featured by high energy
density, high power density, long service life and environmental friendliness and thus have found wide
application in the area of consumer electronics. However, lithium-ion batteries for vehicles have high
capacity and large serial-parallel numbers, which, coupled with such problems as safety, durability,
uniformity and cost, imposes limitations on the wide application of lithium-ion batteries in the vehicle.
The narrow area in which lithium-ion batteries operate with safety and reliability necessitates the
effective control and management of battery management system. This present paper, through
the analysis of literature and in combination with our practical experience, gives a brief introduction to
the composition of the battery management system (BMS) and its key issues such as battery cell voltage
measurement, battery states estimation, battery uniformity and equalization, battery fault diagnosis and
so on, in the hope of providing some inspirations to the design and research of the battery management
system.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Compared with other commonly used batteries, lithium-ion
batteries are featured by high energy density, high power density,
long life and environmental friendliness and thus have found wide
application in the area of consumer electronics. However, auto-
motive lithium-ion batteries have high capacity and large serial-
parallel numbers, which, coupled with such problems as safety,
durability, uniformity and cost, imposes limitations on the wide
application of lithium-ion batteries in the vehicle. Lithium-ion
batteries must operate within the safe and reliable operating
: þ86 10 62789699.
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area, which is restricted by temperature and voltage windows.
Exceeding the restrictions of these windows will lead to rapid
attenuation of battery performance and even result in safety
problem. According to the instructions of most battery manufac-
turers, the reliable operating temperatures required by a majority
of current automotive lithium-ion batteries (graphite/LiMn2O4 or
by acronyms C/LMO, C/LiCoxNiyMnzO2 or C/NCM, C/LiFePO4 or C/
LFP, C/LiNi0.8Co0.15Al0.05O2 or C/NCA) are: discharging at �20 to
55 �C and charging at 0e45 �C and for lithium-ion battery with
Li4Ti5O12 or LTO negative electrode, the minimum charge temper-
ature can be �30 �C. Usually, the operating voltage of lithium-ion
batteries is between 1.5 V and 4.2 V (C/LCO, C/NCA, C/NCM and C/
LMO about 2.5e4.2 V, LTO/LMO about 1.5e2.7 V and C/LFP about
2.0e3.7 V). As indicated in Fig. 1, normally when the temperature is
90e120 �C, the SEI film will start exothermic decomposition [1e3],
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Fig. 1. Safety operating window for lithium ion battery (modified from [11]).

Table 1
Some current EV and the employed lithium-ion batteries.

Vehicle Battery
supplier

Positive
electrode

Negative
electrode

Nissian Leaf EV Automotive Energy
Supply (Nissan NEC JV)

LMO C

Chevrolet Volt Compact Power
(subsidiary of LG Chem)

LMO C

Renault Fluence Automotive Energy
Supply (Nissan NEC JV)

LMO C

Tesla Roadster NCA C
Tesla Model S Panasonic Energy Nickel-type
BYD E6 BYD LFP C
Subaru G4e Subaru LVP C
Honda Fit EV Toshiba Corporation NCM LTO
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but some electrolyte systems will decompose at a lower tempera-
ture of about 69 �C [4]. When the temperature exceeds 120 �C, the
SEI film after decomposition is unable to protect negative carbon
electrode from side reactions with the organic electrolyte and
combustible gas would be produced [3]. When the temperature is
about 130 �C, the separator will start melting and shutting the cell
down [5,6]. When the temperature becomes higher, the positive
material will start decomposition (LiCoO2 will start decomposition
at temperature of about 150 �C [7], LiNi0.8Co0.15Al0.05O2 at about
160 �C [8,9], LiNixCoyMnzO2 at about 210 �C [8], LiMn2O4 at about
265 �C [1] and LiFePO4 at about 310 �C [7]) and produce oxygen.
When the temperature is above 200 �C, the electrolyte will
decompose and produce combustible gas [3], and it will have
violent reactionwith the oxygen produced by the decomposition of
the positive electrode [9] and start to catch fire and lead to thermal
runaway. To charge lithium-ion batteries below 0 �C will lead the
metallic lithium to deposit on the carbon negative electrode surface
and therefore reduce the cycle life of batteries [10]. At an extremely
low temperature, the cathode of batteries will break down, and
result in short circuit [11]. If the voltage is too low or the batteries
are overdischarged, the phase change will lead the lattice to
collapse and therefore the performance of the batteries is influ-
enced [12]. Moreover, it will lead the negative copper collector to
dissolve in the electrolyte (For this reaction, the thermodynamic
equilibrium potential is 0.521 V vs. SHE (Standard Hydrogen Elec-
trode) or 3.566 V vs. Li/Liþ under standard condition). When the
batteries are recharged, the copper dendrite will be formed at the
negative electrode, which, consequently, will result in short circuits
within the batteries [1,12]. An extremely low voltage or over-
discharge will also lead to the reduction of the electrolyte, produce
combustible gas [12] and therefore pose potential security risks. An
extremely high voltage or overcharge will lead the positive elec-
trode to compose and therefore a great amount of heat is produced
[12,13]. It will also lead the metallic lithium to be deposited on the
surface of negative electrode, which will accelerate the capacity
fade, result in internal short circuits and safety problem [12], as
well as the decomposition of the electrolyte (the common elec-
trolyte will decompose if the voltage is higher than 4.5 V [12]). To
solve those problems, people try to develop new battery system
that could be working under very bad situations, and on the other
hand, the current commercial lithium-ion batteries must be fitted
with a management system, through which the lithium-ion
batteries can be controlled and managed effectively, thus every
single cell would be working under proper conditions that those
fault described above would not happen which means that every
cell should be operated within the lithium-ion battery safety
operating window shown in Fig. 1. This present paper, through the
analysis of literature and in combination with our practical expe-
rience, gives a brief introduction to the composition of the BMS and
its key issues, including such issues as battery cell voltage
measurement, battery states estimation, battery uniformity and
equalization, battery fault diagnosis and so on, in the hope of
providing some inspirations to the design and research of the
battery management system.
2. Status of lithium-ion battery and battery management
system (BMS) in EV

Many kinds of lithium-ion batteries are employed in electric
vehicle (EV). Themostwidelyusedpowerbatterycells containcarbon
anode (negativeelectrodes), andnowtheLTOanode is alsodeveloped
fast for these kind of anodeswould help to improve the battery dura-
bilityandperformanceoffastcharging.Thepositiveelectrodematerial
of the power battery could be LMO, LFP, NCM, NCA, etc. Some of the
current EV and the employed batteries are listed inTable 1 [14e22].

Usually, the capacity and voltage of the battery cell used in the
EV are relatively small. So first the single battery cells should be
packed and integrated to a battery module, and the battery system
in the EV often contains one or more module according to the
requirement. The battery system usually consists of hundreds or
thousands of single cells. To manage so many cells, the battery
management system (BMS) is very important.

There is still no consensus of the final definition of BMS and
what BMS do. According to Ref. [23,24], we adopt the wide view
that BMS is any system that manages the battery. The system could
be electronic systems, mechanical systems or any possible device
and technology. The battery could be a single cell, battery module
or battery pack, and it could be rechargeable or non-rechargeable.



L. Lu et al. / Journal of Power Sources 226 (2013) 272e288274
The system could manage the battery by monitoring the battery,
estimating the battery state, protecting the battery, reporting the
data, balancing it, etc.

BMS in vehicles is comprised of kinds of sensors, actuators,
controllers which have various algorithms and signal wires. Three
main tasks of the BMS in vehicles are as follows [25].

� To protect the cells and battery packs from being damaged.
� To make the batteries operate within the proper voltage and
temperature interval, guarantee the safety and prolong their
service life as long as possible.

� To maintain the batteries to operate in a state that the batteries
could fulfill the vehicles’ requirements.

And the automotive power batteries must also meet relevant
standards or specifications [26e32].

The basic framework of hardware from BMS in vehicle is shown
in Fig. 2.

TheBMSwouldhaveinputssuchas:maincircuitcurrentsensorand
voltage sensor tomeasure themain current andvoltage; temperature
sensors to measure the temperature of the cells, the temperature
outsidethebatterybox,andmaybealsothetemperatureatthebattery
coolant inlet and outlet; general analog inputs like accelerate pedal
sensorandbrakepedal sensor;andgeneraldigital inputs likeStartkey
ON/OFF signals, charging allow/banned switch, etc.

The BMS would have outputs such as: thermal management
module like fan and electric heater to do the cooling control and
heating control; balancing module like capacitorþ switch array
and dissipation resistance to do the battery equalization; voltage
safety management like main circuit contactor, battery module
contactor; general digital outputs like charging indicator, failure
alarm; and communication module. And also the BMS would have
the internal power supply module and global clock module. And it
may have the charging system and manemachine interface
module. The electromagnetic compatibility should also be guar-
anteed. The bad working environment of electric motor cars
requires BMS to possess good anti-electromagnetic interference
capacity and send out low levels of radiation as well.

The software of BMS would cover these functions.

(1). Battery parameters detection

This includes total voltage, total current and individual cell
voltage detection (to prevent overcharging, overdischarging and
Digita

Charging
System

Temperature
sensors array

Bus
Voltage/current
measurement

General
analogue inputs

Cell voltage
measurement

General digital
inputs

Man-machine
interface module

Accelerating pedals sensor 1

Brake pedal sensor 1

Brake pedal sensor 2

Start key ON/OFF signals

Economy/sport switch

Charging allow/banned switch

Battery box outside temperature

Battery box coolant inlet temperature

main circuit current sensor

main circuit voltaget sensor

Battery box coolant outlet temperature

Battery cell temperatures

Battery cell voltages

Battery module voltage

Accelerating pedals sensor 2

Balancing allow/banned switch

Fig. 2. Basic framework of software a
antipole), temperature detection, smoke detection, insulation
detection, collision detection, impedance detection and so on.

(2). Estimation of battery states

This includes state of charge (SOC) or depth of discharge (DOD),
state of health (SOH) and state of function (SOF). SOC or DOD of
batteries is estimated according to such conditions as working
current, temperature and voltage. SOH is estimated according to
the extent of abuse and performance degradation of batteries. SOF
is estimated according to SOC, SOH and operating environment of
batteries.

(3). On-board diagnosis (OBD)

The faults include sensor fault, actuator fault, network fault,
battery fault, overvoltage (overcharge), undervoltage (over-
discharge), overcurrent, ultra high temperature, ultra low tempera-
ture, loose connection, exceeding combustible gas concentration,
insulationfault,uniformityfault,over-fast temperatureriseandsoon.

(4). Battery safety control and alarm

This includes thermal system control and high voltage safety
control. When the faults are diagnosed, the vehicle control unit or
the charger will be informed through the network and they are
required to handle the faults (when a certain threshold value is
exceeded, BMS can also cut-off the battery power supply) to
prevent damage to batteries or injuries to people caused by high
temperature, low temperature, overcharge, overdischarge, over-
current, electric leakage and so on.

(5). Charge control

On the basis of the properties of its own batteries and the power
level of the charger, BMS could control the charger to charge the
batteries.

(6). Battery equalization

According to the information of each cell, BMS adopts such
equalization methods as equalizing charging, dissipative equaliza-
tion or non-dissipative equalization to make the SOC between cells
as consistent as possible.
l core

Internal power
supply module

Communication
module

Thermal
management

module

Balancing
control module

High voltage
safety control

Global clock
module

General digital
outputs

Main circuit positive contactor
Battery module contactor

Main circuit fuse

Cooling control

Heating control

Balanced cell select

Active/passive balancing

Calibration channel

The controller CAN channel 1

Balancing working indicator
SOH indicator
Charging indicator
Overload overvoltage alarm

Battery box cover state switch

Insulation measurement

Main circuit negative contactor

The controller CAN channel 2

Failure alarm

nd hardware of BMS in vehicle.
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(7). Thermal management

According to the temperature distribution within the battery
pack and the requirements of charge or discharge, BMS decides
whether to start heating or cooling as well as heating power and
cooling power.

(8). Networking

Since it is not convenient to disassemble BMS in a vehicle and
meantime the vehicle is required to have network functions, it is
desirable to conduct on-line calibrating and monitoring, automatic
code generation and on-line program downloading (program
update without disassembling the case) for BMS without dis-
assembling the case. Usually the network CAN (Controller Area
Network) is adopted.

(9). Information storage

BMS is used to store key data, such as SOC, SOH, accumulated
charge and discharge Ah numbers, fault code, uniformity and so on.

The real BMS in the vehicle may only have parts of the hardware
and software which is mentioned above. There should be at least
one cell voltage sensor and one temperature sensor for each battery
cell. For a battery systemwith only scores of cells, theremay be only
one BMS controller or even the BMS function would be integrated
in the main controller of the vehicle. And for the battery system
with hundreds of cells, there may be one master controller and
several slave controllers which only manage one battery module.
For each battery module with dozens of cells, there could be some
module circuit contactor and balancing module, and the slave
controller would manage the battery module like measuring the
voltage and current, controlling the contactor, equalizing the cells
and communicating with the master controller. The master
controller would do the battery state estimation, fault diagnosis,
thermal management, etc. according to the data reported by the
slave controllers.

Nowadays, BMS has become a focus that is developed by various
vehicle companies, colleges and universities [33e39]. Currently,
quite a few companies have developed corresponding BMS prod-
ucts, such as the products developed by Beijing Key Power Tech-
nology Co., Ltd [40], Harbin Guantuo Power Equipment Co. Ltd [41],
Anhui Ligoo New Energy Technology Co. Ltd [42], Huizhou Epower
Electronic Co. Ltd [43], American Elithion Corporation [44],
Australian EV power [45] and British REAPSystems [46], etc.

3. Key issues of BMS

Although BMS has many functional modules, this present paper
only analyzes and summarizes its key issues. At present, the key
issues or difficulties of BMS are precise measurement of cell
voltage, estimation of battery states, battery uniformity and
equalization, and battery fault diagnosis.

3.1. Cell voltage measurement (CVM)

The major difficulties of CVM lie in: (1) the battery packs of
electric motor cars have hundreds of cells connected in series and
thus there are many channels to measure the voltage. As there is
accumulated potential when the cell voltage is measured and the
accumulated potential of each cell is different from that of
another, which makes it impossible to have unified compensation
or elimination methods, certain difficulties arise in the design of
circuit measurement. (2) Voltage measurement requires high
precision (especially for C/LiFePO4 battery). Estimation of SOC and
other battery states imposes high requirements on cell voltage
precision. Here we take the C/LFP and LTO/NCM type batteries as
example. Fig. 3 shows the open circuit voltage (OCV) of batteries
C/LiFePO4 and LTO/NCM as well as corresponding SOC variation
per mV voltage. From this figure, we can find that the slope of
OCV curve of LTO/NCM is relatively steep and the maximal
corresponding SOC rate of change per mV voltage is lower than
0.4% in most range (except SOC 60e70%). Therefore, if the
measurement precision of cell voltage is 10 mV, then the SOC
error obtained through OCV estimation method is lower than 4%.
Accordingly, for LTO/NCM battery, the measurement precision of
cell voltage needs to be smaller than 10 mV. But the slope of OCV
curve of C/LiFePO4 is relatively gentle and the maximal corre-
sponding SOC rate of change per mV voltage reaches 4% in most
range (except SOC <40% and 65e80%). Therefore, the collection
precision of cell voltage has a high requirement, reaching around
1 mV. At present, most collection precision of cell voltage reaches
only 5 mV.

In literature [47] and [48] the voltage measurement methods of
batteries cells and fuel cells stacks are, respectively, summarized.
The methods include resistance voltage divider method, optical
coupling isolation amplifier method, discrete transistor method
[49], distributed measurement method [50], optical coupling relay
method [51], and so on. Currently, the voltage and temperature
sampling of cells has formed chip industrialization and Table 2
compares the performance of chips used in most BMS.

3.2. Battery states estimation

Battery states include SOC, SOH and SOF and their relationship is
shown in Fig. 4. SOH is determined by service life prediction and
fault diagnosis output together. SOF is determined by SOC, SOH and
the fault states. SOF takes into consideration the influence of aging
factor, SOC range, temperature range and fault level.

3.2.1. SOC estimation algorithm
There is not a final generally accepted definition of SOC. Herewe

take this view that the state of charge (SOC) means the ratio of the
remaining charge of the battery and the total charge while the
battery is fully charged at the same specific standard condition [52].
And the SOC is often expressed in percent, 100% means fully
charged and 0%means fully discharged.

There is no doubt of this definition for a single battery cell, but
for the battery module (or a battery pack, since the battery pack is
consisted of several modules, so to calculate the SOC of the battery
pack from the SOC of the batterymodules is just like theway to find
the SOC of the battery module from the SOC of the single cells. It is
the same for the other states variables), the situation is a bit
complicated. Battery module which is connected by several cells in
parallel could be considered as a single cell with high capacity and
the SOC could be just estimated just like the single cell, since the
self-balancing characteristic of the parallel connection.

Though under the series connection condition, the SOC of the
battery module could also be estimated just like the single cell, but
consider the battery uniformity, it would be better to considered in
detail. Assume that the capacity and SOC of each single cell in
the battery module are known. If there is a very efficiency and
non-lossy balancing device, then the SOC of the battery module is:

SOCM ¼
P

SOCiCiP
Ci

(1)

where SOCM means the SOC of the battery module, the SOCi means
the SOC of the ith battery cell and the Ci means the capacity of the
ith battery cell. If the balancing device is not so efficiency, the real
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Fig. 3. OCV curves and the SOC variation per mV voltage (measured under 25 �C, and rest time 3 h).
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SOC of the battery module is related to the real performance of this
balancing device.

If there is no balancing device or with dissipation balancing
device, there would be some waste capacity which could not be
used like shown in Fig. 5 while there exists variations between the
cells in the battery module.

Thus, the capacity of the battery module is:

C ¼ minðSOCiCiÞ þminðð1� SOCiÞCiÞ (2)

And the remaining available capacity of the battery module is:

CR ¼ minðSOCiCiÞ (3)

Thus, the SOC of the battery module is:

SOCM ¼ minðSOCiCiÞ
minðSOCiCiÞ þminðð1� SOCiÞCiÞ

(4)
Table 2
Statistics of battery management and equalization chips.

Company and product name Analog Devices
Co. AD7802

Linear Technolog
Co. LTC6802

Voltage measurement channels 6 12
Temperature measurement

channels
6 2

Max chips in daisy chain 20 36
Max cells in serial 120 432
Max voltage of daisy chain (V) 380 >1000
AD resolution (Bit) 12 12
AD conversion time 1ms 1.08ms
Equalization Yes Yes
Operating temperature range

(�C)
�40 to 105 �40 to 85

Standby current (mA) 4 60
Input voltage range (V) 7.5e30 10e50
Anyway, with the precise estimation of the cell SOC and the
uniformity of the battery modules, the SOC of the module could be
calculated. The most challenging work is how to estimate the cell
SOC for the BMS in the vehicles.

There are many methods to estimate the SOC in electrical
chemistry laboratory like coulometric titration technique [53]. But
it is quite challenging to estimate the SOC of commercial batteries
without destruction of the battery or interruption of the battery
power supply, especially the on-line estimation in vehicle.
Currently there has been intensive study on SOC estimation
algorithm would be introduced as follows.

(1) Discharge test method

The most reliable method to determine the battery SOC is the
discharge test with controlled conditions, i.e., specified discharge
y Texas Instrument
Co. bq76PL536

Atmel
Co. ATA6870

Maxim
Co. MAX11068

6 6 12
2 2 2

>16 16 31
>96 96 372
N/A N/A N/A
14 12 12

6ms N/A 10ms
Yes Yes Yes
�40 to 85 �40 to 85 �40 to 105

12 10 1
6e36 6e30 6e70



Fig. 4. BMS state estimation algorithm framework.
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rate and ambient temperature. This test could precisely find the
remaining charge of the battery then the SOC, but the consumed
time is pretty long and after the test the battery would have no
power, thus this method could be only used in laboratory but not
useful for BMS to do the on-line estimation of batteries in vehicle.

(2) Ampere-Hour integral (coulomb counting) method

This method is the most simple and general method to get the
battery SOC. The Ampere-Hour integral method could be repre-
sented by Eq. (5),

SOC ¼ SOC0 �
1
CN

Zt

t0

hI$ds (5)
Fig. 5. The waste capacity and remaining capacity of a battery module (take a battery
module of 2 cells as example).
where SOC0 represents SOC at the initial time t0; CN represents
rated capacity (the capacity of the battery in standard condition,
changing with service life); h represents coulombic efficiency
which is equal to 1 while discharging and is smaller than 1 while
charging; I represents current which is negative at charge and
positive at discharge.

The results of Ampere-Hour integral method have quite satisfac-
tory precision within a certain period of time (it is mainly related to
the sampling precision and frequency of the current sensor) if the
initial SOC0 is relatively precise. Nevertheless, it has the following
disadvantages: (i) the initial SOC0 precision influences on the preci-
sionof SOC, andAmpere-Hour integralmethodcannot get theprecise
initial SOC0 automatically; (ii) the Coulombic efficiencycan begreatly
influenced by the operating states of batteries (such as SOC [54,55],
temperature, current, etc.),which is difficult tomeasure preciselyand
thenproduces cumulative effects on SOC error; and (iii) the precision
of the current sensor, especially the measurement drift will result in
cumulative effects and then influence theprecisionof SOC. Therefore,
the SOC estimation results of only using the Ampere-Hour integral
method cannot meet the requirement of SOC precision.

(3) Open circuit voltage method

SOC is related to the embedding quantity of lithium-ion in the
active material and with static thermodynamics. Therefore, the
open circuit voltage after adequate restingwhich can be considered
to reach balanced potential, since there is a one-to-one corre-
spondence between OCV and SOC and bear little relation to the
service life of batteries, is an effective method to estimate SOC of
lithium-ion batteries [56e59].

The greatest advantage of the open circuit voltage method is the
high precision of SOC estimationwhile its remarkable disadvantage
is that batteries are required to have long time resting in order to
reach balance. It usually takes some time for batteries to recover
from an operating state to a balanced state and the time duration is
related to the states of SOC, temperature, and so on [60,61]. It takes
C/LiFePO4 battery more than three hours at low temperature [60].
Therefore, this method, if used alone, is suitable only when electric
vehicles are parking rather than driving.
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And careful consideration and research are needed as the open
circuit voltage of some kinds of batteries is related to the charge/
discharge process (history). For example, the charge open circuit
voltage and discharge open circuit voltage of C/LiFePO4 batteries
have hysteretic phenomena (similar to the Ni-MH battery) [62e
65,60], as indicated in Fig. 6. Gerschler et al. introduce some
detailed interesting experiments about hysteretic phenomena of
different battery types including NCM, NCA and LFP types [66].

(4) Battery model-based SOC estimation method

The OCV method need enough rest time to estimate the SOC,
thus it cannot be used while the vehicle is driving. So if we could
on-line estimate the OCV during the driving, then the battery SOC
could be easily derived. To on-line get the battery OCV, a battery
model is needed.

The commonly used battery models include equivalent circuit
model [67], and electrochemical model [68e70]. Usually a battery
model, especially an ECM model, could be expressed as

U ¼ UOC � UR � Up (6)

where U is the battery terminal voltage, Uoc is the battery OCV, UR is
the voltage drop caused by the ohmic resistance, Up is the voltage
drop caused by some internal polarization process. So it is easily to
found the battery OCV if the battery model parameters are known.
Then using the OCV-SOC look-up table derived by experiment, the
battery SOC could be easily found. H.W. He, et al. [71] use this
method and take the Rint model, first-order RC model and the
second-order RC model, respectively, and find that using the
second-order RC model the maximum estimation error is 4.3% and
the mean error is 1.4%.

For this method, the precision and complexity of battery model
are very important. Hua et al. [67] collected 12 commonly used
equivalent circuit models, including the combined model, the Rint
model (simple model), the Rint model with the zero-state hyster-
esis model, the Rint model with the one-state hysteresis model, the
Enhanced Self-correcting (ESC) model with two-state low-pass
filter, the ESC model with four-state low-pass filter, the first-order
RC model, the first-order RC model with one-state hysteresis, the
second-order RC model, the second-order RC model with one-state
hysteresis, the third-order RC model and the third-order RC model
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Fig. 6. Charge and discharge OCV curves of C/LiFePO4 (measured under 25 �C, and rest
time 3 h).
with one-state hysteresis. These models can be used for dynamic
estimation, but the estimation precision is related to the model
precision and the signal collection precision. Hua et al. [67] adopt
experimental data, fit the parameters of the above twelve equiva-
lent circuit models and compare the precision and complexity of
themodels. The research results show that the first-order RCmodel
with one-state hysteresis, which is simple and have high precision,
is more suitable for the voltage estimation of LiFePO4 battery.

Electrochemicalmodel is establishedon thebasis ofmass transfer,
chemical thermodynamics and electrodynamics, and many param-
eters of batteries internal materials are involved which are hard to
obtain with accuracy. Since the huge computations, this model is
usually used for the battery performance analysis and battery design.

(5) Neural network model method

Neural network model method [72,73] estimates SOC through
the use of nonlinear mapping characteristics of the neural network.
When building a model, the neural network method does not have
to take into consideration the details of batteries, and it boasts
universality, suitable for the SOC estimation of all kinds of batteries.
But a great number of training sample data are needed to train the
network and the estimation errors can be greatly influenced by
training data and training methods [73]. Meanwhile the neural
network method requires a lot of computations, which necessitates
powerful processing chips (such as DSP).

(6) Fuzzy logic method

The basic idea for the fuzzy logic method [74e77] is to simulate
the fuzzy thinking of human beings by using the fuzzy logic on the
basis of a great number of test curves, experience and reliable fuzzy
logical theories and eventually to realize SOC prediction [77]. This
method requires first enough understanding of the batteries
themselves and meanwhile relatively large computations.

(7) Other SOC estimation methods based on battery performance

There are such methods as alternating current (AC) imped-
ance method [78e80], direct current (DC) internal resistance
method [81]. In the AC impedance method, a series of small
amplitude sinusoidal alternating currents of different frequencies
are loaded to the batteries and then measure the frequency
response function of the battery system under different
frequencies. SOC of batteries can be obtained through the
analysis of AC impedance. One difference of the DC internal
resistance method from the AC impedance method is that the
former has fixed time interval to calculate the internal resistance
of the batteries and the resistance can be ohm resistance (the
time interval is short enough). The DC internal resistance bears
certain relation to SOC of the batteries and such a relation can
be a basis to obtain SOC of the batteries.

Due to the following reasons:

i. The use of the AC impedance method requires a signal
generator [82], which will increase cost.

ii. The impedance spectroscopy or internal resistance of
batteries has a complicated relationship with SOC and there
are many influencing factors (including the uniformity of
internal resistance).

iii. The internal resistance of batteries is very small and that of the
batteries in vehicle is at the level of milliohm, which makes it
difficult to obtain the internal resistance with accuracy.

iv. The internal resistance of lithium-ion batteries varies little in
a wide range and is hard to recognize, as indicated in Fig. 7.
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Fig. 7. Internal resistance of lithium ion batteries (measured under 25 �C, using the HPPC test procedure).
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It is difficult for AC impedance method and DC internal resis-
tancemethod to find direct application in battery SOC estimation in
vehicle. Usually they are used in fault diagnosis.

(8) Integrated algorithm based on the two of more of the above
methods

Currently the integrated methods include simple correction,
weighted fusion algorithm, Kalman filtering (or Extended Kalman
filtering, EKF), sliding mode observer and so on.

The simple correction integrated algorithm mainly includes
Ampere-Hour integral method with correction by open circuit
voltage, Ampere-Hour integral method with SOC calibration after
full charging [55] and so on. For batteries in pure electric vehicles.
(i) The working conditions are simple. When the vehicles are
moving, except a little braking regeneration, the batteries are
mainly in a discharge state; when the vehicles are charged in
a charging station, their batteries are in a charge state. The
hysteresis of the open circuit voltage is easy to estimate. (ii) The
batteries have large capacities and the errors of the Ampere-Hour
integral are relatively low. iii. The possibility to be fully charged is
great. Therefore, Ampere-Hour integral methodwith the initial SOC
correction according to the open circuit voltage and SOC calibration
after full charging could meet the precision requirement of SOC
estimation of batteries for pure electric vehicles. But for batteries in
hybrid electric vehicles (HEV). (i) The working conditions are
SOCv

SOCc
TkInput at

Ik ,Vk ,Tk, SO Ck-1

Unit delay Z-1

Ampere-Hour integral
(consider ing the Coulombic

efficiency and self discharging)

1.Find R and Voc (related to tk,
Tk and SOCk-1)
2.Determint SOCv according to
the fomular :
Voc=VH(I)+Vo(SOCv)

Fig. 8. weighted fusion algori
complex. When the vehicles are moving, the current are both
charged and discharged in order to keep the battery SOC in
a narrow range. (ii) Except frommaintenance, there is no chance of
full charging when the vehicles are parked. (iii) The batteries have
small capacities and the errors of Ampere-Hour integral methods
are relatively high. Therefore, the simple open circuit voltage
correction method is unable to meet the requirements and other
integrated methods are needed.

The weighted fusion algorithm is to add up the SOC estimated
through different methods in accordance with certain weights to
obtain SOC. Verbrugge et al. [83] adopt the weighted fusion algo-
rithm using the SOC obtained through the Ampere-Hour integral
and the SOC obtained through the first-order RC model with
hysteresis, as shown in formula SOC¼w(SOCC)þ (1�w)(SOCV),
where w represents the weight. This algorithm has been applied in
the GM hybrid dynamic system and Fig. 8 shows the block diagram
of this algorithm.

In the Kalman filtering algorithm, since SOC cannot bemeasured
directly, two methods of SOC estimation are integrated as
a dynamic system, in which the SOC is regarded as an internal state
of the system and is analyzed. Furthermore, because the battery
system is a nonlinear system, the EKF method is usually adopted.
Generally, researches are conducted through systems formed by
the Ampere-Hour integral method and other battery models.
Gregory L. Plett [82] introduces five Kalman integrated algorithms.
They are the Ampere-Hour integral method with combined model,
W( t , SOCk-1 , Ik ,Vk)

1-W( t,SOC k-1 , Ik ,Vk)

SOCk

(Power Capability)
Σ

thm (adapted from [65]).
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Rint model (simple model), the Rint model with the zero-state
hysteresis model, the Rint model with the one-state hysteresis
model and the enhanced self-correcting model. Wang et al. [84]
study the Kalman algorithm of Ampere-Hour integral method
and second-order RC model method. Xia et al. [85] study the
Kalman filtering method of Ampere-Hour integral and first-order
RC model, pointing out that the meaning of EKF as a state
observer lies in: when the Ampere-Hour integral method is used to
estimate SOC, the voltage of the capacitor is estimated and then the
estimation values of the cell terminal voltage are obtained to act as
a basis for correcting SOC; meanwhile noises and errors are taken
into consideration, filtering gains of each step is determined, the
weight of the electromotive force in the calculation of SOC is ob-
tained and eventually the optimal estimation of SOC is obtained. In
this way, the Ampere-Hour integral method and the model-based
SOC estimation method are combined organically and the latter
overcomes the shortcoming of cumulative errors of the former,
thus achieving SOC closed-loop estimation. Meanwhile, since the
influence of noises is taken into consideration during the calcula-
tion, the algorithm has a strong inhibiting effect on noises. Shi et al.
[86] study the Kalman filtering method of the Ampere-Hour
integral method and the Nernst model. Fan et al. [87] study the
Kalman filtering method of the Ampere-Hour integral and the first-
order RCmodel. Mao et al. [88], based on the Ampere-Hour integral
method and the first-order RC model method, realize SOC estima-
tion under nonlinear conditions by adopting the unscented Kalman
filtering (UKF) algorithm. Charkhgard et al. [89] use the Kalman
filtering to integrate the Ampere-Hour integral method and neural
network model method. The core content of the Kalman filtering
method used for SOC estimation is to establish a reasonable battery
Table 3
Comparison of the SOC estimation methods.
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Nonline
equivalent model and build a group of state equations. Accordingly,
this method is highly dependent on the battery model and an
accurate battery model is needed to be established to obtain
accurate SOC. In order to save computations, the model should not
be too complex. Besides, another disadvantage of the Kalman
method is that the Kalman gains are not easy to determine. If the
selection of the gains is undesirable, the state will disperse [90].

In order to overcome the shortcomings of the Kalman filter
method, Kim [90] puts forward a slip mode observer technology,
which possesses strong robustness against the uncertainty of the
model parameters and disturbance.

The different SOC estimation algorithms are compared in the
Table 3. The SOC estimation error of each method is summarized in
Table 4. For pure EV, Ampere-Hour integral method with correction
by open circuit voltage and SOC calibration after full charging is
simple and suitable. For HEV, On the basis of the analysis and
comparison of the 12 battery models by the literature [67] and the
above analysis, we think that the system formed by the first-order
RC model with one-state hysteresis and the Ampere-Hour integral,
combined with the algorithm of the adaptive control theory, is
supposed to be most suitable, and this method is also suitable for
pure EV.

3.2.2. SOH estimation algorithms
There is still no consensus in the industry on what SOH is and

how SOH should be determined. State of health (SOH) is a figure of
merit of the present condition of a battery cell (or a battery module,
or a battery system), compared to its ideal conditions [91]. The unit
of SOH is percent, and 100% means it is a fresh battery. The SOH
could be derived by capacity and the internal resistance, and it
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Table 4
SOC estimation error of the different SOC estimation methods.

Author Year SOC estimation method SOC estimation error

V. Pop 2006 OCV method Max 1.2%
H.W. He 2012 Battery model-based

SOC estimation method
Max 4.327%
Mean 1.423%

E.H. Liao 2011 Neural network model Max <4%
K.T. Chau 2004 Neuro-fuzzy inference

system
Mean <1%

J. Wang 2007 Fuzzy logic Max <10%
M. Verbrugge 2004 Weighted fusion

algorithm
Max <10%

C.Y. Xia 2007 EKF 0.7%
P. Shi 2006 EKF Max <4%
Q.H. Mao 2010 UKF Max <3.85%
M. Charkhgard 2010 EKF (Model is from

Neural Networks)
Mean 3%

Il-Song Kim 2006 Sliding mode observer Max <3%

Table 5
Comparison of two durability models.

Mechanism model External characteristic model

Research method Mechanism of lithium
ion loss (metal deposition
or lattice deformation),
side reactions and SEI film
thickening

Such external characteristics as
capacity
fade and internal resistance
increment

Observation object Concentration change of
lithium ions in electrolyte,
change of SEI membrane
resistance and active
substance particle size by
scanning
electron microscope

Capacity and internal resistance

Advantage Clear principles, able to
get a comprehensive
understanding
of the batteries aging

Simple and easy to predict
capacity fade
and internal resistance increment

Disadvantage Complex, accurate design
parameters and mass
transfer
coefficient input are
needed,
often influencing the
precision

Based on a large number of
experiments
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could also be derived by other battery parameters like AC
impendence, self-discharge rate, and power density. Take the
capacity as an example, SOH could be defined as the ratio of the
current capacity and the rated capacity given by the manufacture
[24]. Generally, if the battery capacity is 80% less than the initial
value, which means the SOH is less than 80%, then the BMS would
warn the user to change the batteries.

The SOH decrement of a battery cell is mostly caused by the
battery aging and degradation, namely, durability problems. That
means with the using or storing of the battery cells, the battery
capacity would decrease and the internal resistance would
increase. Thus the SOH of the battery cells worsen.

Durability is a research focus of current industrial field and the
major parameters characterizing the durability of batteries are
capacity and internal resistance. Generally, the performance
degradation of energy batteries (like batteries employed in EV) is
characterized by the capacity fade and the performance degrada-
tion of power batteries (like batteries employed in HEV) by the
increment of internal resistance. For the battery in the PHEV which
requires both enough energy and sufficient power, both the
capacity and internal resistance should be considered.

Like the SOC, the SOH of a battery module (or a battery system)
is complicated. The capacity of a battery module decreases may be
caused by the capacity decrease of every cell in the battery module,
but the battery variations could be a possible reason. In this case,
the battery SOH could be fixed by balancing. The internal resistance
of a battery module increases may be caused by the resistance
increase of every cell in the battery module, but screw looseness
would also be a reason and after tightening the screws, the problem
of the SOH could be treated. Those SOH decrement is reversible and
could be considered as sub-health.

There are also some irreversible SOH decrements which are not
caused by the aging, like battery damage caused by vehicle colli-
sion, battery short circuit caused by water, etc.

So, the aging of batteries is just normal performance degrada-
tion and cannot fully characterize the SOH. Most current SOH
definitions are only limited to the category of the aging of batteries
rather than actually involving the battery SOH (such as health, sub-
health). Consequently, it is more appropriate to call current algo-
rithms as state of life (SOL). However, it is important to find the
battery aging mechanism and determine the battery capacity and
resistance during the battery operating.

The main aging mechanism of the C/LFP batteries is [92]: the
metal ions of the positive electrode have side reactions with the
electrolyte and then dissolve in the electrolyte and have reduction
reaction with the negative electrode during the cycles or storage
and form SEI film, reducing the quantity of active lithium-ions. In
terms of operating conditions, the major factors that influence the
life and safety of batteries are: high temperature [93e96] (side
reaction intensified); extremely low temperature (it is easy for
material lattice to be damaged and for metal ions to be reduced);
high potential or overcharge [93e97] (it is easy for electrolyte to
decompose and have side reaction with the positive electrode and
for lithium-ions to be reduced at the negative electrode); over-
discharge [96] (it is easy for the copper foil of the negative electrode
to corrode and for the active material lattice of the positive elec-
trode to collapse); high charge/discharge rate [97] (the rise of
temperature leads to the intensification of side reactions and the
active material crystal lattice is easy to fatigue and collapse).

Currently SOH estimationmethodsmainly include: (1) durability
model-based open-loop SOH estimationmethod; (2) battery model-
basedparameters identificationclosed-loopSOHestimationmethod.

3.2.2.1. Durability model-based open-loop SOH estimation method.
Durability model-based open-loop SOH estimation method
predicts directly the capacity fade and the internal resistance
changes based on the battery durability model which includes
durability mechanism model and durability external characteristic
model [98e100]. The main difference of the two models is that the
former places emphasis on the research of the internal side reaction
mechanism of batteries and takes SEI film resistance, ion concen-
tration and other microscopic quantities as its observation objects
while the latter starts from experimental laws and focuses on the
capacity fade and the internal resistance increment shown during
the cycles and storage. Table 5 compares the two models.

Literature [100e103], according to the aging mechanism of
the positive and negative electrodes and on the basis of the
cyclic lithium-ion loss mechanism and the battery internal
material corrosion mechanism, establishes a SEI film resistance
increase model and a terminal voltage model after the perfor-
mance degradation. Because the detailed aging mechanism of
lithium-ion batteries is complex, the model parameters are
hard to define accurately and also the computations are rela-
tively large [100], usually the models are impractical to be used
in the BMS in vehicle.

Quite a few literatures have touched upon the models based on
external characteristics of batteries, amongwhich themost common
one is an Arrhenius-basedmodel. Usually the batteries are cycled or
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stored at specific conditions, i.e. constant charge/discharge rate or
selected temperature and the capacity loss or internal resistance
increment with the cycle numbers or with time. To be simplified,
usually only one or two factors would be considered to find the
influence of these factor on the battery durability. Since under high
ambient temperature, the battery degradationwould be accelerated
and the temperature is considered to be one of the most important
factor which influent the battery life. Thus usually the durability
experiment would be taken under different temperature and could
not only accelerate the experiment, but also find the relation
between battery aging and the ambient temperature.

Some examples are shown as follows:

i. The manual of Toshiba gives a storage life model for lithium
cobalt oxides batteries [104], namely:

Qloss ¼ 1:544� 107exp
��40498
8:3143T

�
t (7)
where Qloss represents capacity loss percentage and its unit is %; T
represents absolute temperature and its unit is K; t represents time
and its unit is month.

ii. Bloom et al. [105] conduct experiments and analysis on the
capacity fading rates of batteries at different ambient
temperatures, and the battery capacity fade model which
taking temperature as accelerated stress is verified, then the
relationship between the battery performance degradation
and ambient temperatures and cycle time are discussed and
expressed as:

Closs ¼ Ae�
Ea
RT$tz (8)
where Closs represents area specific impedance (ASI) or power and
its unit is U or W; A is constant; Ea represents active energy and its
unit is J; R is gas constant and its unit is J/(mol K); t represents time
and its unit is h; z is exponent of time and can take 1/2 under simple
conditions. A, Ea/R, z can be obtained by fitting the experimental
data.

iii. Based on the work of Bloom and others, Wang et al. [106]
propose a double-factor model which takes Ah-throughput
as variable, obtain a battery life model which takes temper-
ature and discharge rate as accelerated stress by multiplying
the time with the discharge rate and achieve a prediction
error within 20% under double stress acceleration,

Qloss ¼ Ae�
Ea
RT$ðAhÞz (9)
where Ah represents ampere-hour and its unit is Ah; other
parameters are the same with those in Eq. (8).

iv. Matsushima [107] studies the performance degradation of
large-scale lithium-ion batteries, also find out that capacity
loss have a square root relationship with the time, namely:

Qloss ¼ Kf � t
1
2 (10)
and find out that the coefficient Kf of capacity loss within 30% is
different from that of capacity loss above 30%. The former is greater,
which indicates that the first 30% capacity fades rapidly in speed.
And Kf complies with the Arrhenius law.
v. Extendedmodels based on the Arrhenius model. For instance,
in accordance with the experiments on the cycle life of
lithium cobalt oxides batteries, Li et al. [108] put forward the
following extended Arrhenius model:

Qloss ¼
�
aea=T þ bIb þ c

�
nðle

l=TþmIhþf Þ
c (11)
where nc represents charge/discharge cycles; I is discharge current
and its unit is A. a, b, c, l, m, f, a, b, l, h are all constants and can be
determined by fitting through experiments,

vi. Li et al. [109] consider comprehensively many factors that
influence battery life, such as ambient temperature, discharge
rate, discharge cut-off voltage, charge rate and charge cut-off
voltage, put forward a life modeling method based on
coupling strength judgment and multi-factor input (in this
model the influence of temperature also makes reference to
Arrhenius modeling method and the influence of electric
physical factors makes reference to inverse power law), and
on the basis of factor sensitivity of the model, analyze the
weights of influence of all factors on the battery life. The
prediction error of the durability model for the battery life is
within 15%.

vii. Other external characteristic modeling methods also include
neural network model. For example, Jungst et al. [110]
establish a neural network model when studying the
storage life of batteries that take LiNi0.8Co0.15Al0.05O2 as the
positive electrode material.

The above traditional models are mostly experience models
obtained from experiments under controlled conditions and cannot
characterize accurately the performance degradation of power
batteries in vehicles for they take no account of the actual varied
working conditions of vehicle operation. Especially, the battery
aging process under different duty cycles are not discussed in these
models. The further study of the battery aging and degradation is
still needed. Recently, there are some recent works consider these
problems and develop some new ideas.

Dubarry et al. [111,112] discuss the path dependence of the
battery degradations and the aging process. A model which
synthesize several cell aging scenarios based on degradation
modes, including loss of active material, loss of lithium inventory,
kinetic degradation or increase of polarization resistance, forma-
tion of parasitic phases, Li plating, is built.

Based on the research results of mechanical fatigue, Safari et al.
[100,113] adopt the PalmgreneMiner (PM)method commonly used
in mechanical fatigue research to predict the capacity fade of
battery under simple and complex working conditions and make
comparisons with capacity loss accumulation over time (LAT)
method, finding that PM method is superior to LAT method.

3.2.2.2. Battery model-based parameters identification closed-loop
SOH estimation method. The battery model-based parameters
identification observation closed-loop method, based on existing
battery models such as models introduced in Section 3.2.1, adopts
optimal state estimation technologies such as the least square
method, Kalman filtering and other algorithms, identifies such
battery model parameters as capacity and internal resistance
according to the operating data and then obtain SOH of batteries.
And this method could also deal with the SOH changes not caused
by aging.

Plett [114] takes internal resistance and capacity as the system
state parameters and adopts the EKF to obtain SOH. The state
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estimation function of internal resistance is shown as follows (Rint
model is adopted):

Rkþ1 ¼ Rk þ rk
yk ¼ OCVðZkÞ � Rkik þ ek

(12)

where Rk represents the internal resistance of batteries, and it is
basically considered stay constant and its change is characterized
by a speculative noise rk; yk represents the estimated operating
voltage of batteries; ik represents the operating current of batteries;
Zk represents SOC of batteries, which can be estimated by another
EKF (thus dual EKF are formed) or obtained through othermethods;
ek represents the error of battery model.

Likewise, the state estimation function of capacity C is

Ckþ1 ¼ Ck þ rk

dk ¼ Zk � Zk�1 þ
hiik�1Dt
Ck�1

þ ek
(13)

Function (13) is a modification of ampere-hour integral formula
and structurally the estimation value of dk equals 0. Likewise, Zk can
be SOC estimated by another EKF (thus dual EKF are formed) or
obtained through other methods.

Gould et al. [115,116] also identify the capacity in battery models
on the basis of Kalman filtering method and linear fitting method
and then obtain the capacity fade along with operation times.
Besides, regarding the internal resistance in the battery equivalent
circuit model as low frequency impedance, the slip mode control
technology is adopted to identify the resistance [117].

Remmlinger et al. [118] introduce a battery internal resistance
on-line identification method for hybrid motor vehicles. First in
order to be able to realize on-line application, they modify the
second-order RC model and increase the computation speed. Then
on the basis of special load signal (transient voltage and current
when the engine starts), they employ the linear least square
method to obtain the internal resistance value of the battery model.

Verbrugge et al. [119,120] believe that the Kalman filtering
algorithm is the most representative method for recursive param-
eter identification if we have a good understanding of the system’s
state parameters, measurement parameters and the evolution of
noises. But if there is a lack of comprehensive understanding of the
state parameters, measurement parameters as well as noises, the
recursive least square method with time weighted exponential
forgetting factor would be a practical method. They use this
method to identify several parameters of lead acid batteries,
nickelehydrogen batteries and lithium-ion batteries (including
open circuit voltage, internal resistance and other parameters
needed to be identified). They also study the influences of the fixed
forgetting factor and the optimized variable forgetting factor on the
identification effect.
Current
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Fig. 9. SOC and SOH estimation algorithm framework using
Wang et al. [121] find that the battery model-based recursive
algorithm which calculates the voltage through superposition
integral adopted by Verbrugge becomes unsteady when the
sampling frequency is high. Therefore, they improve the algorithm
of the battery model and also adopt the weighted recursive least
square method with exponential forgetting factor to identify the
battery parameters (open circuit voltage, internal resistance and
so on).

Chiang et al. [122,123] build a parameter estimation algorithm
based on the battery equivalent circuit model by using the adaptive
control method commonly used in linear or nonlinear control
system. For the convenience of using the adaptive control tech-
nology, the equivalent circuit model of lithium-ion batteries is
described by state function. The algorithm framework is shown in
Fig. 9. The internal resistance and OCV of batteries can be moni-
tored and estimated on-line, which are used to determine SOH and
SOC, respectively. Filter 1 is used to filter the sampling data and
guarantee the estimation precision. Filter 2 is a high frequency filter
and is used to filter the high frequency disturbance of the identified
internal resistance and OCV so as to estimate SOH and SOC more
precisely.

3.2.3. SOF estimation algorithm
The SOC describes how the battery differs from a fully charged

battery, and the SOH describes how the battery differs from a fresh
battery. The state of function (SOF) is used to describe while the
battery is employed, how the battery performance meets the real
demands. The SOF is determined by the SOC, SOH, operating
temperature and the charge/discharge history if needed.

For the battery used in the energy storage area, the SOF could be
defined as the ratio of the remaining available energy in the battery
and the maximum possible energy could be stored in the battery
[124]. For battery employed in the EV and PHEV, the remaining
electrical driving distance is important, thus while estimating SOF,
this part should be considered.

For the battery used in the system which requires specific
supplied power, the SOF should describe how the battery meets the
power demands. Thus, the SOF could be defined as a yes/no logical
variable [125], while the SOF equals 1 means the battery could
meets the demands and SOF equals 0 means could not. However, it
would be more preferred to define the SOF as this equation:

SOF ¼ P � Pdemands
Pmax � Pdemands

(14)

where P means the possible power the battery could supply, the
Pdemands means the demands of the power, and the Pmax means the
maximum possible supplied power of the battery (while the SOH
and SOC equals to 0, and the operating temperature is at a specific
temperature). The relations between SOF and SOC, SOH are shown
Parameter
Extraction

Filter 2

SOC

SOH

Lookup
Table 1
Lookup
Table 2

the adaptive control technology (adapted from [101])
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in Fig. 10 (refer to [126]). SOF equals to 0 means the battery could
barely meets the power demands. For battery employed in the EV,
HEV and PHEV, the battery should meets the power demands of the
motors (also includes the motors of the air conditioner), thus while
estimating SOF, this part should be considered.

The SOF of a single cell is easy to get if the SOC and SOH of the
cell are determined, but actually the SOF of the battery module is
more meaningful and more complicated to be derived because of
the battery uniformity problems. To find the SOF of the battery
module, the model of battery module should be built from the cell
model. M. Dubarry, et al. [127,128] consider the cell variations,
discuss how to model them, and build battery module model from
the cell model. According to the battery model and the SOC, SOH of
each cell, the remaining energy and the capable power could be
easily calculated. Thus the SOF of the battery module would be
derived.

3.3. Battery uniformity and equalization

The battery uniformity refers to the phenomenon that though
the battery packs is integrated by batteries of the same type and
specification, there exist certain differences between each cells as
voltage, SOC, capacity and capacity fade rate, internal resistance
and its change rate, battery life, self-discharge rate and its change
rate along with time [129]. During the process of production and
packing, especially for power battery in vehicle, if the
manufacturing environment of batteries is poor and the production
line is not automatic but manual, it is inevitable to have relatively
great differences between cells. Along with the battery operating
time increase, the uniformity of power batteries in vehicle will
worsen, which will eventually influence the life of the battery
packs. The essential factor that influences uniformity is self-
discharge rate which is influenced by such factors as temperature
and SOC. The higher the temperature is, the greater the self-
discharge rate will be [130e132] and the higher the voltage is
(which means the greater the SOC is), the greater the self-
discharge rate will be [133]. Meanwhile temperature is one of the
greatest factors which influence the battery life. Accordingly, the
non-uniformity of the temperature of battery packs exerts the
greatest influence on the non-uniformity of battery performance
and non-uniformity of other parameters such as internal resistance
will eventually influence the uniformity of temperature.
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Fig. 10. Schematic figure of the relations between SOF and SOC, SOH.
The evaluation index of uniformity usually adopts a method of
mathematical statistics and takes voltage, cell capacity, SOC and
internal resistance as major parameters. Wang et al. [134] used the
voltagemean value and variancemethod to study the change law of
battery uniformity. Wei [135] adopts a probability statistics method
to study the voltage uniformity of C/LFP batteries, believing that
voltage distribution of batteries complies with the normal distri-
bution. Chu et al. [136] used voltage overall dispersion and indi-
vidual cell dispersion to characterize uniformity. The industrial
standard QC/T743-2006 also evaluates the voltage uniformity of
batteries in accordance with the standard deviation and standard
deviation coefficient of cell voltage. The characterization of
uniformity by the voltage parameter is suitable for battery systems
(such as C/LMO, etc.) whose slope of SOCevoltage curve is steep
and has high linearity while voltage uniformity is not suitable for
evaluating such battery systems (such as C/LFP, etc.) whose slope of
SOCevoltage curve is gentle and the slope change is great while
SOC is very high or very low. The industrial standard of cell capacity
uniformity is also characterized the standard deviation and stan-
dard deviation coefficient of cell capacity. It is suitable to adopt the
cell capacity uniformity as the battery packing indicator while it is
reasonable to adopt the remaining capacity of individual cells to
characterize the uniformity of the operating battery after packing
for the difference in the remaining capacity of individual cells is the
major reason why the life of battery packs is shorter than that of
individual cells. Since the capacity or remaining capacity cannot be
directly measured, the above SOC and SOH estimation algorithms
are needed to obtain these values.

The non-uniformity in remaining capacity mainly caused by the
non-uniformity of self-discharge or Coulombic efficiency and
equalization is needed to make compensation. The equalization
method can be divided into chemical equalization method and
physical equalization method [129]. The former realizes equaliza-
tion by using some side reactions existing in batteries themselves
during charge/discharge and it is only suitable for some types of
batteries such as lead acid batteries and nickelehydrogen batteries.
For these types of batteries, the “overcharge” equalization method
can be adopted tomake the performance parameters of all batteries
approach uniformity [137]. For lithium-ion batteries, it is needed to
add oxidationereduction additives to conduct voltage limiting
protection. Otherwise, batteries would be seriously damaged and
even lead to safety problems. The physical equalization method is
to achieve equalization through external circuits and normally has
two types: dissipation and non-dissipation. The dissipationmethod
[34,138,139] is to dissipate the remaining capacity of individual
cells that need to be equalized in battery packs through resistances
or other means and achieve the goal of equalizing the remaining
capacity differences between various cells within a battery pack.
The non-dissipation method is to use a mobile shunt component or
a voltage or current converter to transfer energy from one cell to
another cell. These components can be analog or digital. The
topological structures of the non-dissipation method include
capacitorþ switch array [140], scattered DC/DC converter module
[138,141], coaxial multi-winding transformer [33,142], current
redirector [143] and independent charging [144]. Since self-
discharge exerts the greatest influence on uniformity, the func-
tion of equalization is mainly to compensate the non-uniformity
caused by self-discharge. The self-discharge rate of lithium-ion
batteries is usually very low, 3e5% per month. The time of equal-
ization for BMS in vehicle can be relatively long; therefore, the
current needed for equalization could be relatively low. Meanwhile
the battery non-uniformity emergence is a very slow process
(except the batteries have fault such as micro short circuit, etc.).
Besides, using dissipative method, the structure is simple, does not
consume much energy and can meet the demand of equalization.
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All these help the dissipative equalization method to have wide
applications at present. The non-dissipation method, although its
efficiency is higher, has fewer applications due to such problems as
its complex structure, poor reliability and difficulties in realization
[145]. The equalization device of high current is usually used for the
offline maintenance of batteries, which can save maintenance time.

The battery equalization algorithm can be divided into the
equalization strategy based on voltage uniformity, the equalization
strategy based on SOC uniformity and the equalization strategy
based on remaining capacity uniformity.

Stuart et al. [145] designed a modularized BMS for large-sized
batteries, which has both dissipative and charging equalization
function, and adopts the battery equalization strategy based on
voltage uniformity of batteries. Chen et al. [146] designed a bidi-
rectional equalization method to realize charge/discharge equal-
ization and adopts the equalization strategy based on voltage
uniformity of batteries. However, the literature [147e150] equalizes
the battery on the basis of SOC uniformity of individual cells. Jiang
[151] adds the adaptive correction along with cycles to the
remaining capacity estimation algorithm of medium-sized lithium-
ion battery packs (5e10 Ah), solves the problem of low measuring
precision of remaining capacity after numerous cycles and equalizes
the battery on the basis of the characteristic that under the full
discharge conditions SOCs of individual cells differ greatly fromeach
other and are easy to be identified, which decreases the undesirable
cases in which the voltage equalization is likely to make individual
cells with high capacity but low voltage platform during discharge
compensatedwith energy first and release energy to other batteries
at last. Lin [152] believes that at present there is no mean that can
calculate accurately the remaining capacity of batteries and thus it
has no practical meaning to take SOC as the equalization objective
since the measuring results of SOC has great errors. Lin holds that
using the cell voltage uniformity as the equalization objectivewould
be better to equalize the battery packs.

Although the battery equalization algorithm has many practical
applications, the objective function is not clear and the equalization
efficiency is not high. But in fact, behind SOC or voltage equalization
methods, there is a common problem that needs to be solved: how
to make use of the battery pack capacity. For a serial connected
battery pack, it is clear that the battery pack capacity is always less
or equal to the capacity of the cell with theminimum capacity. Thus
the optimal equalization result is to make the capacity of the
battery pack equal to that of the cell with the minimum capacity.
Namely, while the battery packs are cycling, this cell can be both
discharged fully and charged fully, and would not be overcharged
Fig. 11. Ideal battery equalization. (a) The battery pack needs no equalization. (b) The cell wi
The cell with the minimum capacity needs to be charged or the ith cell needs to be discha
and overdischarged. If this requirement is satisfied, the non-
uniformity of the SOC, voltage and even the remaining charge of
batteries are of no importance. Suppose that the total capacity of
the individual cell with theminimum capacity in the battery pack is
Ct,min_cell and its current remaining capacity is Cr,min_cell; for the ith
cell, this cell could be any other cells in the battery pack, its total
capacity is Ct,i and its current remaining capacity is Cr,i. Then if all
the cells in the battery pack have 0� Cr,i� Cr,min_cell�Ct,i� Ct,min_cell,
the cell with minimum capacity can reach 100% DOD charge/
discharge and the battery pack capacity would be equal to Cr,min_cell.
At this time, there is no necessity for equalization, as shown in
Fig. 11(a). In other cases as shown in Fig. 11(b), the cell with
minimum capacity cannot be discharged fully otherwise the ith cell
would be overdischarged, so it is a need to discharge the cell with
the minimum capacity or charge the ith cell; for such cases as
shown in Fig. 11(c), the cell with minimum capacity cannot be
charged fully otherwise the ith cell would be overcharged, it is
a need to discharge the ith cell or compensate the remaining
capacity of the cell with minimum capacity. To adopt this ideal
method, the total capacity of all the individual cells and their
remaining capacity need to be identified. These problems could be
solved by the adaptive control technology of SOC and SOH intro-
duced in Sections 3.2.1 and 3.2.2, but it is still very difficult to put
into practical applications.

3.4. Fault diagnosis

Fault diagnosis is one of the necessary technologies to ensure
the battery safety. The battery management system standard [29]
formulated by International Electrotechnical Commission (IEC) in
1995 requires that the battery management system for electric
vehicles must possess certain battery fault diagnosis functions,
including giving early alarms of unhealthy batteries and providing
battery aging information. The Chinese standard “Technical Speci-
fication of Battery Management System for Electric Vehicles” [30]
also has the requirement of battery fault diagnosis, stipulating
the basic requirement items of fault diagnosis and extensible fault
diagnosis items (in total 26 items) and classifying three levels of
faults.

At present, the fault diagnosis technology has developed into
a new interdiscipline. On the basis of the operating principle of
diagnosis objects, it integrates computer network, database, control
theory, artificial intelligence and other technologies. It has had
mature applications in other fields. The basic methods of fault
diagnosis are shown in Fig. 12 [153e157].
th the minimum capacity needs to be discharged or the ith cell needs to be charged. (c)
rged.



Data acquisition and analysis

Reasoning Machine BlackboardKnowledge Base

Knowledge
Acquisition

Explanator

User interface

Global Database

Fig. 13. Intelligent fault diagnosis system structure (adapted from [127]).

Battery mechanism
study

Battery test

Battery system
modeling

Model parameter
identification and

system state estimation

Fig. 14. BMS research process.

L. Lu et al. / Journal of Power Sources 226 (2013) 272e288286
The battery fault diagnosis technology is still developing and
researches on it are mainly based on process parameter estimation,
state estimation, experience based and other methods (similar to
the above SOH researches). Bohlen et al. [158] realize on-line
diagnosis of batteries through the model-based on-line identifica-
tion of the battery internal resistance. D.P. Abraham et al. [159]
prove from mechanism that the changes of battery electrodes are
the reason for the battery internal resistance increment and the
power degradation through gas chromatography, liquid chroma-
tography, electron microscopy, X-ray spectroscopy and other
technologies. On the basis of SOH of lead acid batteries, Sun [160e
162], assuming the voltage curve under normal constant charge/
discharge conditions is smooth, identifies the potential faults of
battery packs by observing the changes of the charge/discharge
curve. The characteristics of sample entropy and approximate
entropy are used to eliminate the influence of current changes so as
to identify the battery faults under varied current. Likewise, the
analysis of battery uniformity also provides a method for fault
analysis of battery packs.

Intelligent fault diagnosis system is based on the method of
expert system and has found applications in fault diagnosis of other
fields. It is usually composed of knowledge base, inference engine,
interpreter, manemachine interface, integrated database and
knowledge capture, as shown in Fig. 13 [153]. The knowledge base
and the inference machine are the core technology and in some
application condition the system could be working without the
manemachine interface and the interpreter. The battery fault
diagnosis can also make use of the intelligent fault diagnosis, but
this is still in a research stage. Liu [153] researches a set of
knowledge base construction and inference machine considering
the battery fault diagnosis characteristics and designs an open
knowledge base, which overcomes the shortcoming of poor
adaptability of traditional fault diagnosis systems and effectively
realizes the independence between the inference machine and the
knowledge base. Liu [163] constructs an expert system of battery
fault fuzzy diagnosis, which (1) analyzes the relation between the
data changes of battery external characteristics and the battery
faults and summarizes diagnosis rules for common battery faults in
combination with the experience and knowledge of battery
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experts; (2) builds a fault diagnosis model for battery packs in
combination with the theories of fuzzy mathematics and puts
forward a solution method for battery symptom membership,
determining the health level of batteries according to the fault
membership. Through the expert diagnosis system, the early
diagnosis of unhealthy batteries is realized.Wu [164], learning from
the methods used in literature [163], also develops a battery fault
expert diagnosis method based on fuzzy logic used for remote
monitor and control system.
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4. Conclusion

To sum up, the basic method and procedures of BMS research is
indicated in Fig. 14. First through researches on the mechanism of
the research object (namely batteries), a deep understanding of the
battery performance evolution process and mechanism could be
derived. Meanwhile, the battery performance would be tested, thus
the major andminor factors that influence the battery performance
as well as the influence laws could be determined. Using the
modeling method based on mechanism, semi-experience or expe-
rience to form practical battery system models for BMS (with
adequate precision and less complex computations). During oper-
ation, in accordance with collectable data, the adaptive control
technology is adopted to on-line or offline identify the parameters
of the battery system, estimate the states of batteries (SOC, SOH, SOF
and faults) and inform the vehicle controller through the network
so as to ensure safety and reliable operation of vehicles. Therefore,
the issues that require intensive studies in the BMS are (1) studies
on the battery performance; (2) the building of batterymodels with
practicability; and (3) the application of the adaptive control tech-
nology or the expert system theories in battery management.
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