GUHA - a data mining method

David Coufal Institute of Computer Science AS CR coufal@cs.cas.cz

GUHA method

(General Unary Hypotheses Automaton)

- a data mining method for automatic search for statistical hypotheses supported by data
- exploratory analysis vs. confirmatory one
- it is based on logical and statistical principles

source database

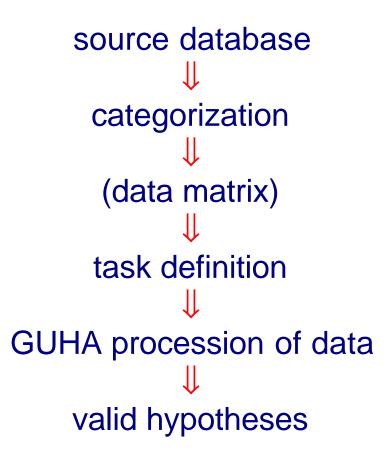
	clump-th	uc-size	bare-nu	class
object 1	5	1	1	2
object 2	5	4	10	2
object 3	8	10	10	4
object 4	6	8	4	2

• rows – objects

- columns variables
- cells values of variables for particular objects
- typical SDs data tables in Access, Excel, ...

Wisconsin Breast Cancer Database

- obtained from the University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg
- available at http://ftp.ics.uci.edu/pub/machine-learning-databases
- set of 699 cases
- for each case there is observed 10 variables
 9 attributes + 1 classification
- each attribute takes values from {1,2, ...10}


part of wbc database

0	A	В	С	D	Е	F	G	Н	j j	J
1	clump-th	uc-size	uc-shape	marg-adh	sec-size	bare-nu	bland-ch	norm-nu	mitos	class
2	5	1	1	1	2	1	3	1	1	2
3	5	4	4	5	7	10	3	2	1	2
ŀ	3	1	1	1	2	2	3	1	1	2
	6	8	8	1	3	4	3	7	1	2
;	4	1	1	3	2	1	3	1	1	2
12	8	10	10	8	7	10	9	7	1	4
1	1	1	1	1	2	10	3	1	1	2
}	2	1	2	1	2	1	3	1	1	2
0	2	1	1	1	2	1	1	1	5	2
1	• • • wbc	1	4	1	2	4	<u>د</u>	4	4	2

- 1) clump thickness
- 2) uniformity of cell size
- 3) uniformity of cell shape
- 4) marginal adhesion
- 5) single epithelial cell size

- 6) bare nuclei
- 7) bland chromatin
- 8) normal nucleoli
- 9) mitoses
- 10) <mark>class</mark>

GUHA procession of source database

categorization

- categorization is a process of categories creation
- each variable is associated with a set of its categories
- a category is a subset of range of variable

categorization examples

<mark>clump-th</mark> = {1,2,3,4,5,6,7,8,9,10} <mark>clump-th</mark> – <mark>clump-th[low]</mark>, <mark>clump-th[mid]</mark>, <mark>clump-th[high]</mark>

clump-th[low]={1,2,3},
clump-th[middle]={4,5,6},
clump-th[high]={7,8,9,10}

<mark>class</mark> = {2,4} <mark>class</mark> – <mark>class[benign]</mark>, <mark>class[malign]</mark>

class[benign]={2}
class[malign]={4}

<u>cedents</u>

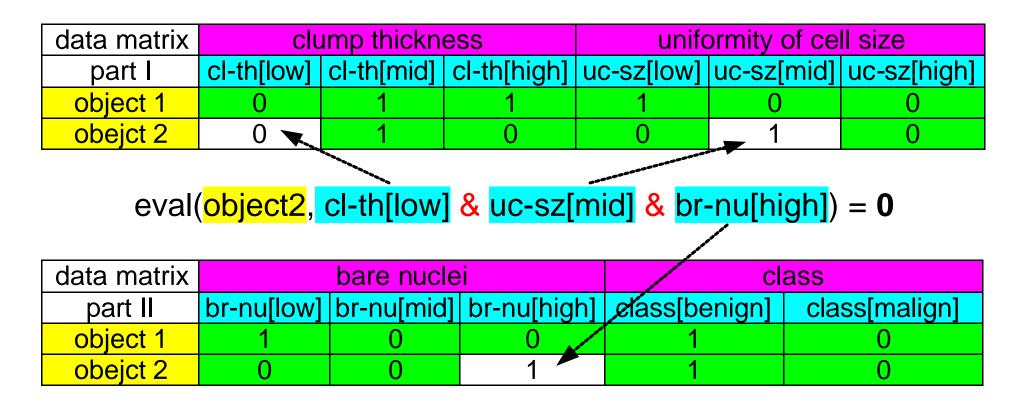
• cedent is any combination of categories of form

C1 & C2 & ... & Cn

where integer **n** is called as length of cedent

• cedents have a logical interpretation in GUHA

they are seen as boolean propositions which are evaluated as true or false, verity is denoted by 1 and falsity by 0


• evaluation of simple cedents (categories) \rightarrow data matrix

src. database	clump-th	uc-size	bare-nu	class
object 1	5	1	1	2
object 2	5	4	10	2
object 3	8	10	10	4
object 4	6	8	4	2

data matrix				unifo	ormity of ce	ll size
part I	cl-th[low]	cl-th[mid]	cl-th[high]	uc-sz[low]	uc-sz[mid]	uc-sz[high]
object 1	0	1	0	1	0	0
obejct 2	0	1	0	0	1	0
object 3	0	0	1	0	0	1
object 4	0	1	0	0	0	1

data matrix	bare nuclei			C	ass
part II	br-nu[low]	br-nu[mid]	br-nu[high]	class[benign]	class[malign]
object 1	1	0	0	1	0
obejct 2	0	0	1	1	0
object 3	0	0	1	0	1
object 4	0	1	0	1	0

 evaluation of compound cedents is made according to laws of boolean propositional logic

= 0 & 1 & 1 = **0**

evaluation of cedents for all objects

- evaluation of given cedent can be made for each object of source database
- this evaluation gives two numbers
 - number of object having eval(object, cedent)=1
 i.e., number of objects satisfying given cedent
 - 2) number of object having eval(object, cedent)=0
 i.e., number of objects not satisfying given cedent

four-fold table

- it is defined for each ordered pair of cedents [antecedent A, succedent S]
- it is given by evaluation of ordered pair of cedents for given data matrix

	S	non(S)
Α	а	b
non(A)	С	d

- a number of objects satisfying A and S simultaneously
- b number of objects satisfying A and non(S), simultaneously
- c number of objects not satisfying A and satisfying S, smt.
- d number of objects both not satisfying A and S smt.

hypotheses in GUHA

general form

A ≈ S

• A,S – antecedent, succedent – some cedents

each hypothesis determines its four-fold table for given data matrix

 quantifier – defined by its associated function which is a function evaluating each ff-table by 1 or 0

if for given hypothesis' ff-table is a value of resp. associated function 1 then we say that this hypothesis is valid in GUHA sense, otherwise it is said to be invalid

FIMPL quantifier - definition

• FIMPL - founded almost implication quantifier =>_{CP,BASE}

associated function depends on two parameters cp, base

$$cp \in (0, 1], base \ge 1$$

its value is 1 iff the following holds

$$prob(a, b) = \frac{a}{a+b} \ge cp, \ a \ge base$$

otherwise it is zero

FIMPL quantifier – explanation

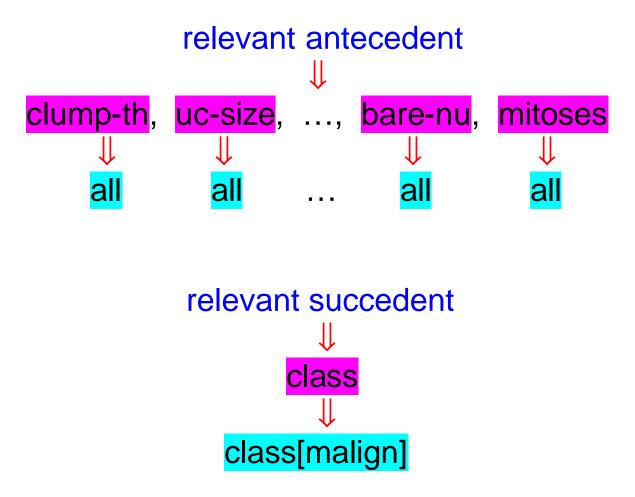
clump-th[high] & bare-nu[>1] =>0.9,70 class[malign]

	S	non(S)
Α	100	5
non(A)	141	453

- cp=0.9, base=70; prob=100/(100+5)= $0.95 \ge 0.9$, a=100 ≥ 70
- hypothesis says conditional probability P(S/A) is greater than cp and value of cases of simultaneous satisfaction of A and S is greater than base
- in other words "many objects satisfying A also satisfy S"

task definition - relevant hypothesis

• relevant hypothesis is given by:


quantifier selection together with its parameters values set of relevant antecedents specification set of relevant succedents specification

• relevant (A/S)dent is given by its maximal length and by set of its acceptable categories

acceptable categories specification

- set of acceptable categories is specified hierarchically by
 - 1) set of variables whose categories can form relevant cedent
 - 2) for each of above variables acceptable categories are determined

relevant cedent specification - example

relevant hypotheses testing

- each cedent of length less or equal to maximal length specified and formed from acceptable categories is a relevant (A/S)cedent
- each hypothesis formed from some relevant antecedent and some relevant succedent, together bound by chosen quantifier, is a relevant hypothesis
- in GUHA each relevant hypothesis is tested for its validity, valid hypotheses are revealed
- number of relevant hypotheses is typically extreme combinatorial problem computerization of the method

GUHA software implementation

- GUHA +- project implementation of GUHA method on Windows 95/98/NT platform
- three parts:
 - 1. GUHA Environment categorization, task definition
 - 2. GUHA Core relevant hypotheses generation and testing
 - 3. GUHA Interpretation listing, filtering and sorting of valid hypotheses

<u>GUHA +- download</u>

• freeware distribution at

http://www.cs.cas.cz, section research, part software

<u>conclusion</u>

- GUHA is a datamining method searching for hypotheses supported by data, it is made in an exploratory way
- it is a universal method no matter from which area data are coming from
- applications in many areas

e.g., in chemical industry, medicine, banking ...