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System structural tasks 

 Several types of tasks 

 Aiming to analyze  

 Capabilities of system‘s structure  

 Possibilities and impacts of structural changes 

 

 Types of structural tasks 

 Path tasks 

 Finding antecedent and subsequent elements in system 

 Feedbacks and their identification 

 Finding elements or relations with specific parameters 

 Network‘s flow 

 System’s decomposition and integration 

 System‘s goals 



Path tasks 

 Typical tasks: 

 Finding all possible path between two elements 

 Path‘s length assessment 

 Finding path with predefined parameters (e.g.  shortest, longest, 
of certain length, ...) 

 Tracing path of certain length 

 Finding system’s magnitude (set of all paths in the system) 

 

 Basic graph theory algorithms  

 Dijkstra‘s algorithm for finding the shortest path,  

 Ford-Fulkerson algorithm for finding the maximum flow in a flow 
network 



Basic theorem 

 Non-zero coefficients in the ith power of adjacency 
matrix determine the existence and amount of paths 
with length i between appropriate oriented doubles of 
elements. 

 

 Adjacency matrix  

 Standard two dimensional square matrix  

 Dimension n equal to the number of elements in the system  

 Displays the existence of relation between particular 
elements (0 – no relation, 1 – existing relation) 

 



Matrix „powers“ 

 In general there are no powers of matrixes 

 For square matrix, multiplication by itself is possible  

 Further on we call it exponentiation (doing left multiplication) 

 Matrix multiplication for M(pxq) a N(qxr): 

 

 

 

 S1 – adjacency matrix 

 S2=S1xS1 

 S3=S1xS2 

 S4=S1xS3 

 ….. 
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Meaning of adjacency matric powers 

 S1 

 Displays all paths of length 1 (direct relation between 

elements) 

 S2 

 Displays paths of length 2 

 … 



Number of paths 

 Number  of paths of length n 

 

 

 Total amount of paths in the system (system‘s 

magnitude)  

 

 

 (E - S)-1=E + C ,   (E is unit matrix) 
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Basic graph theory terms 

 Directed graph – all the graph edges have a 

direction associated with them 

 Acyclic graph – finite directed graph with no cycles 

 For acyclic finite directed graphs the length of the 

longest path is limited 



Work with adjacency matrix powers 

 For the adjacency matrix of acyclic finite directed 

graphs there exist a matrix power from which all 

following powers are zero matrixes 

 For cyclic directed graphs we search up to the r-th 

power of matrix, where r=min(p, q)  

p – number of elements 

q – number of relations 

 Higher matrixes show the cyclic paths  



Antecedent and subsequent elements  

 Antecedent elements = elements on paths leading into certain 
element. 

 Subsequent elements = elements on paths leading from certain 
element. 

 Generation = path length (number of following relations – edges) 
that connects certain element with its antecedents or subsequent 

 Finding antecedent and subsequent elements: 

 Subsequent elements to element i, jth generation can be found in the jth 
power of adjacency matrix (SJ) in ith row. Column marks of columns with 
non-zero value in the ith row show the subsequents.   

 Antecedent elements to element i, jth generation can be found in the jth 
power of adjacency matrix (SJ) in ith column. Row marks of rows with 
non-zero value in the ith column show the antecedents.   



Antecedent and subsequent elements 

usage 

 Search for possible spreading of error, disease, 

information, etc. 

 Checking the results of regularization 

 Searching of active sources 

 Serching of active outputs and impact on the 

neighbourhood 

 (tasks about the contamination, imunity, etc.) 



Example 

 Task: in the following system find out: 
a. Antecedent element to element  4, 2nd generation and all 

subsequent elements to element 3,  

b. Number of different paths between elements 1 and 5 

c. The longest path in the system 

d. The shortest path between element 1 and 4 

e. System‘s magnitude 

f. Trace the path from 1 to 5 with length 3 using the forward and 
backward algorithm 
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Adjacency matrix and its powers 

S1 1 2 3 4 5 

1 0 1 1 1 1 

2 0 0 1 0 1 

3 0 0 0 1 1 

4 0 0 0 0 1 

5 0 0 0 0 0 

S2 1 2 3 4 5 

1 0 0 1 1 3 

2 0 0 0 1 1 

3 0 0 0 0 1 

4 0 0 0 0 0 

5 0 0 0 0 0 

S3 1 2 3 4 5 

1 0 0 0 1 2 

2 0 0 0 0 1 

3 0 0 0 0 0 

4 0 0 0 0 0 

5 0 0 0 0 0 

S4 1 2 3 4 5 

1 0 0 0 0 1 

2 0 0 0 0 0 

3 0 0 0 0 0 

4 0 0 0 0 0 

5 0 0 0 0 0 
S5=0 



Example 

a. Antecedent element to element  4, 2nd generation  
1, 2 
all subsequent elements to element 3 
1st generation – 4,5 
2nd generation – 5 
→ 4,5  

b. Number of different paths between elements 1 and 5 
Number of paths between elements i and j is a sum of all aij values 
in all matrixes 
1 paths length 1 
3 paths of length 2 
2 paths of length 3 
1 path of length 4 
total 7 

c. The longest path in the system 
maximal path lenght is equal to the maximal non-zero adjacency 
matrix power 
longest path is of lenght 4 

 



Example 

d. The shortest path between element 1 and 4 

searching for the first non-zero aij position in all the 

matrixes from the first one 

direct path (length 1) 

e. System‘s magnitude (number of all paths in the system) 

Sum of all values in all the matrixes 

9+8+4+1=22 

(E - S)-1=E + C  

 

 



E 1 2 3 4 5 

1 1 0 0 0 0 

2 0 1 0 0 0 

3 0 0 1 0 0 

4 0 0 0 1 0 

5 0 0 0 0 1 

E-S1 1 2 3 4 5 

1 1 -1 -1 -1 -1 

2 0 1 -1 0 -1 

3 0 0 1 -1 -1 

4 0 0 0 1 -1 

5 0 0 0 0 1 

S1 1 2 3 4 5 

1 0 1 1 1 1 

2 0 0 1 0 1 

3 0 0 0 1 1 

4 0 0 0 0 1 

5 0 0 0 0 0 

(E-S1)-1=E+C 1 2 3 4 5 

1 1 1 2 3 7 

2 0 1 1 1 3 

3 0 0 1 1 2 

4 0 0 0 1 1 

5 0 0 0 0 1 C 1 2 3 4 5 

1 0 1 2 3 7 

2 0 0 1 1 3 

3 0 0 0 1 2 

4 0 0 0 0 1 

5 0 0 0 0 0 

∑C=22 



Note 

 the task of finding shortest path can be often solved 

more effeciently using graph theory algorithms – 

e.g.  

 Dijkstra algorithm 

 Dantzig algorithm 

 Floyd algorithm 

 Etc. 



Forward algorithm 

1. In the S1 matrix find list of elements with distance 1 from the initial 
element 

2. Reduce the path length of 1 

3. From the list of elements put the first element as the initial element 

4. If the new reduced length is equal to zero and if in the current list of 
elements the final element exist, then END 

Else 

5. Return to step 3 and in the place of initial element put next element in the 
list 

6. If all elements from the current list are used and condition 4 is not 
fulfilled, use as the current list the previous one 

7. If the condition in 4. is not fulfilled for any list, there does not exist path of 
required length between chosen elements 

 

 Disadvantage – looks through all the paths (solution by “force“) 

 



Example 

 Trace the path from 1 to 5 with length 3 using the forward algorithm 
 Step 1. list of elements: 2,3,4,5 

 Step 2. length=2 

 Step 3. initial node 2 

 Steps 4. NO, 5. initial element 2 

 Step 1. list of elements 3,5 

 Step 2. length = 1 

 Initial node 3 

 4., 5. 

 Step 1. list of elements 4,5 

 length =0 

 Initial node 4 

 4. lenght 0, exists final element 5 – Found path 1-2-3-5 

 Previous list of elements, next element – 5, lenght 1 

 Previous list of elements, next element 3 

 … 

 … 

 … 

 Found path 1-3-4-5 

 

 

 
 

 



Backward algorithm 

1. In the S1 matrix find all direct antecedent elements of 
final element and put them in list Q1. Reduce the path 
length of lenght 1. If the remaining length is zero, then 
END 

2. In the power of adjacency matrix, which exponent is 
equal to the reduced path length find all subsequent 
elements of the initial element and put them in list Q2 

3. Find common element in lists Q1 and Q2. It is the last 
but one element on the path (element ahead of the 
final element). Use this element as the final element 
and continue with step 1. 

 



Example 

 Trace the path from 1 to 5 with length 3 using the backward 
algorithm 
 I find all the direct antecedent elements of node 5 in S1 . Q1 contains nodes 1,2,3,4. 

 In the matrix power S2 (3 minus1) I find end nodes from node 1. Q2 contains 3,4,5. Intersection of  
Q1 and Q2 are nodes  3 and 4. 

 

 Looking for paths from 1 to 4 length 2 

 I find all the direct antecedent elements of node 4 in S1 . Q1 contains nodes 1,3. 

 In the matrix power S1 (2 minus 1) I find end nodes from node 1. Q2 contains nodes 2,3,4,5. 
Intersection of  Q1 and Q2 is node 3.  

 The remaining path length after  subtracting 1 is zero. 

 Found path 1-3-4-5 

 

 Looking for paths from 1 to 3 length 2 

 I find all the direct antecedent elements of node 3 in S1 . Q1 contains nodes 1,2. 

 In the matrix power S1 (2 minus 1) I find end nodes from node 1. Q2 contains nodes 2,3,4,5. 

 Intersection of  Q1 and Q2 is node 2.  

 The remaining path length after  subtracting 1 is zero. 

 Found path 1-2-3-5. 

 

 



Feedbacks 

 Important aspect 

 Can be both  

 beneficially – control theory, living beings, robots, … 

 or undesirable –“deadlock“ 



Feedbacks 

 In graph theory 

 Walk – sequence of nodes and edges  

 Closed walk – sequence of nodes and edges where the 

last node is also the first one 

 Loop – edge that connects the node to itself 

 Feedback – existence of a closed walk in a graph 

 Cycle – a closed walk evaluated by the number of 

repeating  



Feedback identification 

 Using power matrixes of the systems  

 In oriented graph there exists closed walk  there exist at least one 
non-zero element at the main diagonal of C matrix, where C = S Si 

 

 Two certain indicators 

 Element on the main diagonal 

 (Element symetrically according the main diagonal) – finding it sooner 

 In any power of adjacency matrix 

 

 Suspicious thing – elements below the main diagonal 

 There exists some back way (from element with higher number to element with 
lower number) 

 But is has to be also forward way between these elements to ensure feedback 

 (otherwise it may be just unsuitable numbering of elements) 



Taking care of feedbacks 

 Unfoldment in time – detailed control of time 

relations 

 Integration of some part of the system – feedback 

within one element 

 

 Note: sometimes the feedback are necessary 


