
SYSTEMS ANALYSIS

LECTURE 4

STRUCTURAL TASKS 1

Zuzana Bělinová

System structural tasks

 Several types of tasks

 Aiming to analyze

 Capabilities of system‘s structure

 Possibilities and impacts of structural changes

 Types of structural tasks

 Path tasks

 Finding antecedent and subsequent elements in system

 Feedbacks and their identification

 Finding elements or relations with specific parameters

 Network‘s flow

 System’s decomposition and integration

 System‘s goals

Path tasks

 Typical tasks:

 Finding all possible path between two elements

 Path‘s length assessment

 Finding path with predefined parameters (e.g. shortest, longest,
of certain length, ...)

 Tracing path of certain length

 Finding system’s magnitude (set of all paths in the system)

 Basic graph theory algorithms

 Dijkstra‘s algorithm for finding the shortest path,

 Ford-Fulkerson algorithm for finding the maximum flow in a flow
network

Basic theorem

 Non-zero coefficients in the ith power of adjacency
matrix determine the existence and amount of paths
with length i between appropriate oriented doubles of
elements.

 Adjacency matrix

 Standard two dimensional square matrix

 Dimension n equal to the number of elements in the system

 Displays the existence of relation between particular
elements (0 – no relation, 1 – existing relation)

Matrix „powers“

 In general there are no powers of matrixes

 For square matrix, multiplication by itself is possible

 Further on we call it exponentiation (doing left multiplication)

 Matrix multiplication for M(pxq) a N(qxr):

 S1 – adjacency matrix

 S2=S1xS1

 S3=S1xS2

 S4=S1xS3

 …..





q

k

kjikij nmNM
1

)(

Meaning of adjacency matric powers

 S1

 Displays all paths of length 1 (direct relation between

elements)

 S2

 Displays paths of length 2

 …

Number of paths

 Number of paths of length n

 Total amount of paths in the system (system‘s

magnitude)

 (E - S)-1=E + C , (E is unit matrix)







1n

nSC





ji

n

ijn aS
,

)(

Basic graph theory terms

 Directed graph – all the graph edges have a

direction associated with them

 Acyclic graph – finite directed graph with no cycles

 For acyclic finite directed graphs the length of the

longest path is limited

Work with adjacency matrix powers

 For the adjacency matrix of acyclic finite directed

graphs there exist a matrix power from which all

following powers are zero matrixes

 For cyclic directed graphs we search up to the r-th

power of matrix, where r=min(p, q)

p – number of elements

q – number of relations

 Higher matrixes show the cyclic paths

Antecedent and subsequent elements

 Antecedent elements = elements on paths leading into certain
element.

 Subsequent elements = elements on paths leading from certain
element.

 Generation = path length (number of following relations – edges)
that connects certain element with its antecedents or subsequent

 Finding antecedent and subsequent elements:

 Subsequent elements to element i, jth generation can be found in the jth
power of adjacency matrix (SJ) in ith row. Column marks of columns with
non-zero value in the ith row show the subsequents.

 Antecedent elements to element i, jth generation can be found in the jth
power of adjacency matrix (SJ) in ith column. Row marks of rows with
non-zero value in the ith column show the antecedents.

Antecedent and subsequent elements

usage

 Search for possible spreading of error, disease,

information, etc.

 Checking the results of regularization

 Searching of active sources

 Serching of active outputs and impact on the

neighbourhood

 (tasks about the contamination, imunity, etc.)

Example

 Task: in the following system find out:
a. Antecedent element to element 4, 2nd generation and all

subsequent elements to element 3,

b. Number of different paths between elements 1 and 5

c. The longest path in the system

d. The shortest path between element 1 and 4

e. System‘s magnitude

f. Trace the path from 1 to 5 with length 3 using the forward and
backward algorithm

1

2

3

4

5

Adjacency matrix and its powers

S1 1 2 3 4 5

1 0 1 1 1 1

2 0 0 1 0 1

3 0 0 0 1 1

4 0 0 0 0 1

5 0 0 0 0 0

S2 1 2 3 4 5

1 0 0 1 1 3

2 0 0 0 1 1

3 0 0 0 0 1

4 0 0 0 0 0

5 0 0 0 0 0

S3 1 2 3 4 5

1 0 0 0 1 2

2 0 0 0 0 1

3 0 0 0 0 0

4 0 0 0 0 0

5 0 0 0 0 0

S4 1 2 3 4 5

1 0 0 0 0 1

2 0 0 0 0 0

3 0 0 0 0 0

4 0 0 0 0 0

5 0 0 0 0 0
S5=0

Example

a. Antecedent element to element 4, 2nd generation
1, 2
all subsequent elements to element 3
1st generation – 4,5
2nd generation – 5
→ 4,5

b. Number of different paths between elements 1 and 5
Number of paths between elements i and j is a sum of all aij values
in all matrixes
1 paths length 1
3 paths of length 2
2 paths of length 3
1 path of length 4
total 7

c. The longest path in the system
maximal path lenght is equal to the maximal non-zero adjacency
matrix power
longest path is of lenght 4

Example

d. The shortest path between element 1 and 4

searching for the first non-zero aij position in all the

matrixes from the first one

direct path (length 1)

e. System‘s magnitude (number of all paths in the system)

Sum of all values in all the matrixes

9+8+4+1=22

(E - S)-1=E + C

E 1 2 3 4 5

1 1 0 0 0 0

2 0 1 0 0 0

3 0 0 1 0 0

4 0 0 0 1 0

5 0 0 0 0 1

E-S1 1 2 3 4 5

1 1 -1 -1 -1 -1

2 0 1 -1 0 -1

3 0 0 1 -1 -1

4 0 0 0 1 -1

5 0 0 0 0 1

S1 1 2 3 4 5

1 0 1 1 1 1

2 0 0 1 0 1

3 0 0 0 1 1

4 0 0 0 0 1

5 0 0 0 0 0

(E-S1)-1=E+C 1 2 3 4 5

1 1 1 2 3 7

2 0 1 1 1 3

3 0 0 1 1 2

4 0 0 0 1 1

5 0 0 0 0 1 C 1 2 3 4 5

1 0 1 2 3 7

2 0 0 1 1 3

3 0 0 0 1 2

4 0 0 0 0 1

5 0 0 0 0 0

∑C=22

Note

 the task of finding shortest path can be often solved

more effeciently using graph theory algorithms –

e.g.

 Dijkstra algorithm

 Dantzig algorithm

 Floyd algorithm

 Etc.

Forward algorithm

1. In the S1 matrix find list of elements with distance 1 from the initial
element

2. Reduce the path length of 1

3. From the list of elements put the first element as the initial element

4. If the new reduced length is equal to zero and if in the current list of
elements the final element exist, then END

Else

5. Return to step 3 and in the place of initial element put next element in the
list

6. If all elements from the current list are used and condition 4 is not
fulfilled, use as the current list the previous one

7. If the condition in 4. is not fulfilled for any list, there does not exist path of
required length between chosen elements

 Disadvantage – looks through all the paths (solution by “force“)

Example

 Trace the path from 1 to 5 with length 3 using the forward algorithm
 Step 1. list of elements: 2,3,4,5

 Step 2. length=2

 Step 3. initial node 2

 Steps 4. NO, 5. initial element 2

 Step 1. list of elements 3,5

 Step 2. length = 1

 Initial node 3

 4., 5.

 Step 1. list of elements 4,5

 length =0

 Initial node 4

 4. lenght 0, exists final element 5 – Found path 1-2-3-5

 Previous list of elements, next element – 5, lenght 1

 Previous list of elements, next element 3

 …

 …

 …

 Found path 1-3-4-5

Backward algorithm

1. In the S1 matrix find all direct antecedent elements of
final element and put them in list Q1. Reduce the path
length of lenght 1. If the remaining length is zero, then
END

2. In the power of adjacency matrix, which exponent is
equal to the reduced path length find all subsequent
elements of the initial element and put them in list Q2

3. Find common element in lists Q1 and Q2. It is the last
but one element on the path (element ahead of the
final element). Use this element as the final element
and continue with step 1.

Example

 Trace the path from 1 to 5 with length 3 using the backward
algorithm
 I find all the direct antecedent elements of node 5 in S1 . Q1 contains nodes 1,2,3,4.

 In the matrix power S2 (3 minus1) I find end nodes from node 1. Q2 contains 3,4,5. Intersection of
Q1 and Q2 are nodes 3 and 4.

 Looking for paths from 1 to 4 length 2

 I find all the direct antecedent elements of node 4 in S1 . Q1 contains nodes 1,3.

 In the matrix power S1 (2 minus 1) I find end nodes from node 1. Q2 contains nodes 2,3,4,5.
Intersection of Q1 and Q2 is node 3.

 The remaining path length after subtracting 1 is zero.

 Found path 1-3-4-5

 Looking for paths from 1 to 3 length 2

 I find all the direct antecedent elements of node 3 in S1 . Q1 contains nodes 1,2.

 In the matrix power S1 (2 minus 1) I find end nodes from node 1. Q2 contains nodes 2,3,4,5.

 Intersection of Q1 and Q2 is node 2.

 The remaining path length after subtracting 1 is zero.

 Found path 1-2-3-5.

Feedbacks

 Important aspect

 Can be both

 beneficially – control theory, living beings, robots, …

 or undesirable –“deadlock“

Feedbacks

 In graph theory

 Walk – sequence of nodes and edges

 Closed walk – sequence of nodes and edges where the

last node is also the first one

 Loop – edge that connects the node to itself

 Feedback – existence of a closed walk in a graph

 Cycle – a closed walk evaluated by the number of

repeating

Feedback identification

 Using power matrixes of the systems

 In oriented graph there exists closed walk  there exist at least one
non-zero element at the main diagonal of C matrix, where C = S Si

 Two certain indicators

 Element on the main diagonal

 (Element symetrically according the main diagonal) – finding it sooner

 In any power of adjacency matrix

 Suspicious thing – elements below the main diagonal

 There exists some back way (from element with higher number to element with
lower number)

 But is has to be also forward way between these elements to ensure feedback

 (otherwise it may be just unsuitable numbering of elements)

Taking care of feedbacks

 Unfoldment in time – detailed control of time

relations

 Integration of some part of the system – feedback

within one element

 Note: sometimes the feedback are necessary

