The Continuous-Time
Fourier Transform

LAl

The Continuous-Time Fourier Transform

» We shall discuss signals that are not

periodic

Aperiodic signals in continuous time are

represented by the Fourier transform

An aperiodic signal can be viewed as a

periodic signal with an infinite period

* As the period becomes infinite, the
frequency components form a continuum
and the Fourier series becomes an integral
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Representation of Aperiodic Signals

* Revisiting the Fourier series:
— Condider the continuous-time periodic squarewave,
i.e., over oneperiod

wod [ [ !:F\ J1 1

fo mdtkTi2 T2 TOT, T2 T

» TheFourier series coefficients, g, are:

2sinfkw,T,
a, =M where w, =2p /T
kw T
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Representation of Aperiodic Signals

» An dternative representation is as samples of the envelope

function
Tac = 2sinWTy)
w =y

« Withw thought asa continuous varigble
the function (2sinwT,)Aw representsthe envelope of Ta,,
and g aethe samples

» For fixed T, the envelope Ta, is independent of T
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* The Fourier series

Representation of Aperiodic Signals
coefficients and their
envelope for the

N
'“’J(D\/““
P
TN XA
periodic square wave @

for severd valuesof T Ta

(T, fixed)
a8 T=4T, o
b) T=8r,
o T=16T,
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Representation of Aperiodic Signals

e AsT increases, or equivaently, as the fundamenta
frequency w,=2p/T decresses, the envelope is sampled
with a closer and closer spacing

» AsT becomes arbitrarily large, the periodic square wave
approaches a rectangular pulse

* Also the Fourier series coefficients, multiplied by T,
become more and more closely spaced samples

=> The Fourier series coefficients
approach the envelope
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Representation of Aperiodic Signals

» The basic idea behind the development is
that an aperiodic signal is thought as a limit
of a periodic signal as the period becomes
arbitrarily large and the limiting behavior of
the Fourier series is considered
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Representation of Aperiodic Signals

- Consider asignal x(t) of finiteduration T
x®=0 |tPT

T ™ot
* We construct aperiodic signal x,(t) for which x(t) isoneperiod
Xp(t)

BnBulis]bulbe

» Aswechoosetheperiod T to belarger x(t) isidentical to Xt)
over alongerinterval , and asT approachesinfinity,, x,(t) is
equal to x(t) for any finitevalue of t
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Representation of Aperiodic Signals

* Letusexaminetheeffect on the Fourier seriesrepresentation o fx,(t)

« Fourier series: R

xp)= a el
k=-¥

1702 it
a, == x (e dt
k=T 07/2 p(le

where w=2p/T.
* Since x,(t)=x() for [t|<T/2, and dso, since x(t)=0 outside thisinterval

_1J/2

& =305/,

_i ¥ _i
x(t)e kaﬁldt:?lo:‘ x()e” ety
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Representation of Aperiodic Signals
« Defining theenvelopeX(jw) of Ta, &
X (jw) = cf xt)e s dt
we have for the coefficients a

1,,.
ay == X (Jkw
k=T (jkwo)

* Wecan now expressx,(t) intermsof X(jw) as
+¥

Xp= & TX(jkwgels
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Representation of Aperiodic Signals

» Equivalently, since 2p/ T=w,

1 0% i
xp() == & X(jkwp)elMtwy
2 Sy

* AsT gpproachesinfinity , x,(t) => X(t) and the above equation
becomes the representation of x(t)

« Furthermore, wy => 0 asT approaches infinity, and the
summation passesto anintegral

0l Smua Tik-61.140 / Chapter 4 11

The Fourier Transform Pair

1 ¥ i
= A i wt
X(t) 2 Oy X(jw)e!™ dw

J¥

X(jw) = 0, x(t)e Mdt
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Fourier Transform Pair Example 4.1

1/a

V2/2a
* The Fourier transform of a (I
« X(jw)is Fourier transform or Fourier integral of x(t), causal complex exponentia : :

i.e,, the analysis equation
» Theinverse Fourier transform equation is the Xt) = (), a>0
synthesis equation
« For aperiodic signals, the complex exponentials occur
at a continuum of frequencies :
« The transform X(jw) of an aperiodic signal x(t) is =1 SN

¥
X(jw) = ¢g e Mat
o

= —, a>0 A ! @
commonly referred to as the spectrum of x(t) avw " I —
)
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Example 4.4 Example 4.5
« The Fourier transform T « Consider the signd X
of arectangular pulse |—'—| with the Fourier 1
. - transform |__|
L @ }l’ wiw W w
ko, e, X(jw) =1
X(jo) 10, [wpw
T 2T, . . x(t)
X(jw)= ¢p Mt + Usingthesynthesis
5 equation Wi
LN ~ ><(t)=i(§,vewd"’ A /\ ~
w U= S B 2 - =TT N
Tt _sinwt i
ey ®)
pt
6 Olli Smua Tik-61.140 / Chapter 4 15 0l Smia Tik-61.140 / Chapter 4 16
Duality Property of the Fourier Transform Sinc functions
¢ Inexamples 4.4 and 4.5 the Fourier transform pair " A commonly used mw%fqm of the sincfuncion is
consigts of afunction of the form (EnaQybQ sinqg) =34
and a rectangular pulse pa
« InExample44, itisthe signal x(t) that isa pulse, sinc (6)
whilein Example 4.5 it isthe transform X(jw)
1
 Thisisthe consequenceof the duality propertyof the
Fourier transform
paN PN
~ AN S o0 N o
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Sinc functions

Both of the signas in examples 4.4 and 4.5 canbe
expressed in terms of the sinc functions

awT, 0
sin(wT, sng==e 5
X (jw) = 23—11 m—tre - orgindLd
b ep o

. WG
_sifwt) _w€p 5 _ Wsmgwto
p pw p ep o
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Properties of the Square Pulse and
Its Eourier Transform (Sinc function)

* AsW increases, X(jw)
becomes broader while
themain peak of x(t) at
t = 0 becomes higher and
thewidth of the firstlobe
of x(t) becomesnarrower

E (tipv)

%Alw‘ « Inthe limit,

X(t) converges to an
impulse asW ->p
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The Fourier Transform of Periodic Signals

* Wecan construct aFourier transform of aperiodic signal directly
fromits Fourier seriesrepresentation

» Thetransform consists of atrain of impulsesin the frequency
domain, with the areas of the impulses proportional to the Fouri er
series coefficients

» Consider asignal x(t) with aFourier transform X(w) that isasingle
impulse of area2p a w=w,

X(jw) =2pd(w - wo)
 X(t) isobtained from theinversetransformrelation
+¥

Xt) == oo d(w- wo)e"dt ="t
>y
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The Fourier Transform of Periodic Signals
« Moregenerdly, if X(jw) is of the form of alinear combination
of impulses equally spaced in frequency, i.e,

+¥
X(jw)= A2p gdw- kwy)
k=-¥

theinverse transform relation yields

X(t) = ake"“"’
k=-¥

which corresponds to the Fourier series representation
of a periodic signal
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Example 4.7: A Sinusoidal Signal (1)

Xt) = snMot)— (e“’“ e JW[)
1 1

where ==, aj1=-—
El 2 1 2

and a =0, ktlor -1

X(jw)
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Example 4.7: A Sinusoidal Signal (2)

X(t) =cos(w,t) = %(elwol +e 1%!)

where alza,lzé,
and a =0, kilor-1

X(w)
[[ [
-Wo 0 Wo w
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Example 4.8: A Periodic Impulse Train
x(t)

.'¥
Xt)= @d (t- K1)

| 1

k=-¥ |
2T T o T 2T t
Fourier series coefficients =1 ST2G (1) & o gt =
(Calculated in Example 3.8) T Or
w X(w)
. ko
x(jw)=2 8 g Fy- 2K 2
(J ) T k3¥ gw To ese T | ene
4 22 o & & w
T T T T
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Properties of the Periodic Impulse Train

* The Fourier transform of aperiodic impulsetrain in thetime
domain with period T isaperiodic impulse train in the
frequency domain with period 2p/T

« Theinverse relaionship between the time and the frequency
domains:

As the spacing between the impulses in the time domain (i.e.
the period) gets longer, the spacing between the impulsesin
the frequency domain (i.e. the fundamenta frequency) gets
smaller

Theresult is very usgful in the analysis of
sampling systems
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Properties of the Continuous-Time Fourier Transform
Fourier transform pairs: )<(t)—-3Z® X(jw) , y(t)—|3'/i® Y(jw)
*Lneity ) +by) 940 aX(jw) +bY(jw)
. TimeShifiing:  X(t- to)~%® & Mo X(jw)
+ Convolution property:  If h(t)- 76} H(jw) then
YO =X0)* MO ~T@ Y(jw) = X(IWH (jw)

Convolution in the time domain corresponds to
multiplication in the frequency domain
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Convolution Property

* A signa x(t) can be expressed as linear combination of
complex exponentials

1 ¥ 1% et
X(t)==—@ X(jw)eMdw =lim— g X(jkw,)e""'w
0 =550, X (W) lim = 8 X (e w,

« Fregquency response H(jw)= djh(t)e Mt

» The frequency responseis defined as the Fourier transform of
theimpulse responseh(t)

* TheFourier transform of theimpulse response (@ w=kw,) is
the complex scaing factor that the LTI system applies to
eigenfunction gkwet
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Convolution Property

* From superposition:
3
2P oy
» Thus, the responseof alinear systemtox(t) is

y(t) = lim— a X (jkwp)H (jlwo)e” w,

W® 0 2p
=—c‘)><(jw)H(jw)e“"dw
2p 5 .
1Y,
« Definition (synthesis equation) y(t)=$ oY (jw)e'™dt
-¥
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L 4 X(jkp)e™w, ® %a X (o) H( o)W,
k=¥

Duality Property

» By comparing the Fourier transform and inverse transform
relaions 1 sy )
X(t) == 0., X(jw)eMaw
> O

X(jw) = §, x(t)e

we notice that the equations are smilar in fom (but not quite
identical)

This symmetry was dso noticed in the examples 4.4 and 4.5,
i.e,, the transform of a square pulse was the sinc function and
vice versa
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Duality Property
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The Frequency Response

« Frequency response plays an important role in the anadys's of
LTI systems as does the impulse response response
Sincetheimpulse response h(t) completely characterizes
an LTI system, then so must H (jw)

* The pardlel and cascade connections of LTI systems can be
easily pecified using the frequency responsesinstead of the
impulse responses

- Sysemsinpardld: () +hy(t) ~T4® Hy (jw) + Haljw)
« Systems in cascade: fl(t)*hz(t)-sl/:z@ Hy (jw)Ho(jw)
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The Multiplication (or Modulation) Property

e Duality:
Convolution in the time domain corresponds to multiplication
in the frequency domain and
Multiplication in the time domain corresponds to convolution
in the frequency domain

0) =) p()~ 9@ mw):%[S( w)y* P(w)
« Multiplication of one signd by another can be thought of as

using onesignal to scdeor modulatethe amplitude of the
other, and the operation is referred to as amplitude modulation
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Example 4.21: Modulation

S(ju)
 Let st) beasignd withthe N
spectrum S(jw) - ﬁ_\, S
¢ Consder dsoasgnd p() with N
the Fourier transform P(jw)

Plo)

p(t) = cosw,t i ' “7

P(w) =pd (w - w,)

+pd (W +w,)
Ro) = 31 (86« Pl]
« Theproduct r)= pt)st) vl
hes he spectrum R(W) e
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Amplitude Modulation

* By multiplying the signd s(t) with asinusoidd signd, we
notice that
— The information has been shifted to higher frequencies,
i.e, to the frequency (v, of themodulating signa p(t)
— All theinformation in the origina signd s(t) is preserved

 Thisfact formsthe basis for thesinusoida amplitude
modulation systemsin communicaions

» The origind signa s(t) can be eesily recovered fromthe
amplitude modulated signdl r (t)
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Example 4.22: Demodulation

» Consider the modulated Ao

signd r(t) of example w
421and let PAN J[ PANE

g =rt)p®)
where p(t) is agan

w - o
= Pljo) .
e © w0 v

p(t) = cosw,t
The spectra R{w),

o)

4 2 v

Bz

P(w), and G(jw) are /
shown on the right - e "
« The signa s(t) can be recovered from g(t) using a lowpass filter
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Example: Modulation and Demodulation
in Signal Processing

ot ) ~iwt
el Ideal lowpass €

fiter
Hjw)
yi) 1 w(t) O @

x(t) \>_<j [ B I

~wy Wy ®

Figure 4.26 |mplementation of a bandpass filter using amplitude modula-
tion with a complex. exponential carrier.

y(t) = eM¥x(t) f(t) = e ™'w(t)
Y(jw) = X(jWw- w)) F(jw) =W(j W +w,))
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X(j)

Spectra of the signals

a

<

Spectrumof the original Vi
signal x()

b) Spectrumof the
amplitude modul ated
signal y(t) "

¢) Spectrumof the lowpass

N3

filtered signal wit) =

d) Spectrumof the Fli)
demodulatedsignal, i.e., N
theoutput signal f(t) !

1 =w |

(mwg—wg)  (~we + wg)
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